Principal Investigator/Program Director (Last, first, middle): Pham, Christine, T RESEARCH &RELATED Other Project Information 1. * Are Human Subjects Involved? m Yes l No 1.a. If YES to Human Subjects Is the IRB review Pending? m Yes m No IRB Approval Date: Exemption Number: 1 2 3 4 5 6 Human Subject Assurance Number 2. * Are Vertebrate Animals Used? l Yes m No 2.a. If YES to Vertebrate Animals Is the IACUC review Pending? m Yes l No IACUC Approval Date: 09-16-2005 Animal Welfare Assurance Number A3381-01 3. * Is proprietary/privileged information l Yes m No included in the application? 4.a.* Does this project have an actual or potential impact on m Yes l No the environment? 4.b. If yes, please explain: 4.c. If this project has an actual or potential impact on the environment, has an exemption been authorized or an environmental assessment (EA) or environmental impact statement (EIS) been performed? m Yes m No 4.d. If yes, please explain: 5.a.* Does this project involve activities outside the U.S. or m Yes l No partnership with International Collaborators? 5.b. If yes, identify countries: 5.c. Optional Explanation: 6. * Project Summary/Abstract 085273CPhamAbstractAttachment.pdf Mime Type: application/pdf 7. * Project Narrative 8. Bibliography &References Cited 085273CPhamBibliographyattchment.pdfMime Type: application/pdf 9. Facilities &Other Resources 085273CPhamFacilitiesAttachment.pdf Mime Type: application/pdf 10. Equipment 085273CPhamEquipmentAttachment.pdfMime Type: application/pdf Tracking Number: Other Information Page 5 OMB Number: 4040-0001 Expiration Date: 04/30/2008 Principal Investigator/Program Director (Last, first, middle): Pham, Christine, T ABSTRACT The long-term goal of this project is to fully characterize the mechanisms by which neutrophil serine proteases regulate the inflammatory response. We hope that information gained from these studies can be used to develop strategies to inhibit the activity of these proteases in inflammatory diseases while preserving their ability to kill invading pathogens. Over the past several years, we have learned that, more than being degradative enzymes, neutrophil serine proteases can act as specific regulators of inflammation by modulating the release of cytokines and chemokines as well as activating specific receptors. Yet, the exact mechanisms by which these proteases exert these regulatory effects are still unknown. To further characterize these regulatory mechanisms in vitro and in vivo, we propose the following aims: 1. We will define the mechanisms by which cell-surface-bound cathepsin G (CG) modulates neutrophil effector functions. Our data indicate that extracellular CG cleaves a yet-unidentified molecule (or molecules) and this proteolytic modification leads to cytoskeleton reorganization, cell spreading, and effector functions. We have identified two candidate proteins as potential substrates for CG, syndecan-4 and CD43. In this aim, we will determine whether CG directly proteolyses syndecan-4 and CD43 and whether this enzymatic modification is critical for CG-dependent neutrophil effector functions. 2. We will generate a loss-of-function mutation model for proteinase 3 (PR3) to define its role in cytokine production and its contribution to inflammation in vivo. Our preliminary data suggest that in several inflammatory models, PR3 plays an important role in the local production or processing of pro- inflammatory cytokines and chemokines. To definitively study the role of PR3 in inflammation in vivo, we propose to generate a loss-of-function mutation in PR3. We will fully characterize the PR3-deficient mice and use these mutant mice for in vitro assays and in vivo models to define the physiologic role of PR3. 3. We will generate a murine model of anti-neutrophil cytoplasmic antibody (ANCA)-mediated inflammation and determine the factors that dictate disease development. ANCAs are associated with several small vessel vasculitides, including Wegener's granulomatosis. In 90% of Wegener's, ANCAs are directed against PR3, although ANCAs specific for other serine proteases are also found. We propose to determine whether all ANCAs are potentially pathogenic. We also hypothesize that decreased expression of complement regulators in the kidney may be a determinant that influences disease severity in target organ. Project Description Page 6
Showing the most recent 10 out of 27 publications