Heparan sulfate is a highly sulfated polysaccharide with very complicated saccharide structures. Heparan sulfate is present on the cell surface and in the extracellular matrix in a large quantity, and plays important roles in a wide range of physiological and pathophysiological functions. We propose to understand the contribution of specific sulfonated saccharide sequences to assist herpes simplex virus infections. The binding of heparan sulfate to the herpes simplex virus envelope proteins represents the initial step of viral infections. Recent studies reveal that a specific 3-O-sulfated heparan sulfate plays an essential role for assisting the entry of herpes simplex virus 1. This unique subtype of heparan sulfate is biosynthesized by several heparan sulfate 3-0-sulfotransferase isoforms (3-OST). We plan to investigate the susbtrate recognition mechanism of 3-OST. We will also investigate how to prepare the polysaccharides or oligosaccharides with unique sulfonation patterns to improve the efficacy and slectivity for inhibiting herpes simplex infections.
Three specific aims are proposed in this project:
Specific Aim 1 is to investigate the substrate recognition mechanism of 3-OST. We plan to conduct a crystal structure study on 3-OST-5 and site-directed mutagenesis. Second, we plan to convert 3-OST-1, an enzyme that does not produce an HSV entry receptor, to a 3-OST-3-like enzyme that generates an HSV entry receptor by random mutagenesis.
Specific Aim 2 is to develop an enzymatic approach to synthesize octasaccharides and polysaccharides that carry the critical 3-0-sulfo glucosamine residues. Our recent data suggest that this approach allows us to synthesize the polysaccharides in sufficient amounts for studying their effects on inhibiting herpes simplex virus infections.
Specific Aim 3 is to determine the efficacy of the synthesized compounds on inhibitng herpes simplex infections. We plan to determine their effects on the entry as well as on the binding of herpes simplex virus to the target cells. We also plan to investigate the efficacy of these compounds on the entry of herpes simplex virus via different cellular receptors. Our results could lead to a novel approach to treat herpes simplex virus infections and improve the basic understanding on the biosynthesis of HS with specific sulfonation patterns.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
3R01AI050050-09S1
Application #
8071314
Study Section
Special Emphasis Panel (ZRG1-ICI-G (01))
Program Officer
Challberg, Mark D
Project Start
2010-05-17
Project End
2010-09-30
Budget Start
2010-05-17
Budget End
2010-09-30
Support Year
9
Fiscal Year
2010
Total Cost
$7,459
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Xu, Yongmei; Pempe, Elizabeth H; Liu, Jian (2012) Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J Biol Chem 287:29054-61
Xu, Yongmei; Wang, Zhen; Liu, Renpeng et al. (2012) Directing the biological activities of heparan sulfate oligosaccharides using a chemoenzymatic approach. Glycobiology 22:96-106
Sheng, Juzheng; Xu, Yongmei; Dulaney, Steven B et al. (2012) Uncovering biphasic catalytic mode of C5-epimerase in heparan sulfate biosynthesis. J Biol Chem 287:20996-1002
Pempe, Elizabeth H; Burch, Tanya C; Law, Courtney J et al. (2012) Substrate specificity of 6-O-endosulfatase (Sulf-2) and its implications in synthesizing anticoagulant heparan sulfate. Glycobiology 22:1353-62
Joglekar, M V; Quintana Diez, P M; Marcus, S et al. (2012) Disruption of PF4/H multimolecular complex formation with a minimally anticoagulant heparin (ODSH). Thromb Haemost 107:717-25
Liu, Renpeng; Liu, Jian (2011) Enzymatic placement of 6-O-sulfo groups in heparan sulfate. Biochemistry 50:4382-91
Xu, Yongmei; Masuko, Sayaka; Takieddin, Majde et al. (2011) Chemoenzymatic synthesis of homogeneous ultralow molecular weight heparins. Science 334:498-501
Zhou, Xianxuan; Chandarajoti, Kasemsiri; Pham, Truong Quang et al. (2011) Expression of heparan sulfate sulfotransferases in Kluyveromyces lactis and preparation of 3'-phosphoadenosine-5'-phosphosulfate. Glycobiology 21:771-80
Bacsa, Sarolta; Karasneh, Ghadah; Dosa, Sandor et al. (2011) Syndecan-1 and syndecan-2 play key roles in herpes simplex virus type-1 infection. J Gen Virol 92:733-43
Sheng, Juzheng; Liu, Renpeng; Xu, Yongmei et al. (2011) The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J Biol Chem 286:19768-76

Showing the most recent 10 out of 41 publications