Plasmodium falciparum malaria exerts a devastating impact on public health in inter-tropical regions, causing 250 million cases and nearly one million deaths each year. The emergence and spread of chloroquine resistance (CQR) has decimated the efficacy of this former gold-standard antimalarial, and in SE Asia we are now witnessing the emergence of resistance to artemisinins, the fast-acting but very rapidly cleared core component of artemisinin-based combination therapies (ACTs). With precious little in the drug development pipeline, there is an imperative to understand mechanisms of antimalarial drug resistance as a means to optimize current treatments, detect resistance as it emerges, and provide knowledge and reagents to develop improved drugs. In this application, we focus on PfCRT, the primary determinant of P. falciparum CQR.
In Aim 1 we test the hypothesis that the combination of intense CQ pressure and the need to sustain fitness in the face of competition with wild-type strains, has exerted competing selective forces on the evolution of mutant pfcrt that account for its considerable geographic diversity and complex repertoire of haplotypes. To study this, we propose to engineer mutant pfcrt alleles into CQ-sensitive P. falciparum strains from geographically matched regions, and study the impact of these alleles on the degree of CQR and the fitness of these mutant parasites in mixed infections with isogenic parasite lines expressing wild-type pfcrt. This will employ innovative zinc finger nuclease technology to rapidly and specifically target pfcrt for allelic exchange in any genetic background. These data can help predict where and how quickly CQ could regain efficacy and potentially be reintroduced, and identify partner drugs that counteract mutant pfcrt- mediated CQR.
In Aim 2, we hypothesize that novel PfCRT mutations can arise that mediate high- level resistance to quinoline drugs used in first-line ACTs, with a focus on amodiaquine and piperaquine. The approach is based on allelic exchange approaches to examine recently discovered mutations, and the implementation of PCR-based random mutagenesis to select for novel mutations that impart high-level resistance. These data will provide molecular markers to screen for the emergence of resistance to these partner drugs, which essentially act as single agents once the artemisinin component has been cleared.
In Aim 3, on the basis of exciting new data that provide mechanistic insights, we propose experiments to test the hypothesis that the native function of PfCRT involves metal-regulated redox sensing, and peptide transport that has been co-opted via the acquisition of point mutations to permit CQ efflux. This research, which is consistent with NIAID's mission statement, promises to provide significant new insights into PfCRT-mediated drug resistance, and inform strategies to detect resistant strains and identify improved treatments.

Public Health Relevance

Drug-resistant Plasmodium falciparum malaria exerts a devastating impact in intertropical regions. Here, we test hypotheses about how mutant forms of the malaria parasite transport protein PfCRT confer chloroquine resistance, whether this protein can further mutate to mediate resistance to new first-line drugs, and how these mutations impact its native function. The data should directly benefit programs aimed at improved detection and treatment of drug-resistant malaria.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI050234-15
Application #
8857360
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
O'Neil, Michael T
Project Start
2001-08-01
Project End
2017-06-30
Budget Start
2015-07-01
Budget End
2017-06-30
Support Year
15
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Cowell, Annie N; Istvan, Eva S; Lukens, Amanda K et al. (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:191-199
Ross, Leila S; Dhingra, Satish K; Mok, Sachel et al. (2018) Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 9:3314
Schuh, Anna Katharina; Rahbari, Mahsa; Heimsch, Kim C et al. (2018) Stable Integration and Comparison of hGrx1-roGFP2 and sfroGFP2 Redox Probes in the Malaria Parasite Plasmodium falciparum. ACS Infect Dis 4:1601-1612
Lee, Andrew H; Dhingra, Satish K; Lewis, Ian A et al. (2018) Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter. Sci Rep 8:13578
Agrawal, Sonia; Moser, Kara A; Morton, Lindsay et al. (2017) Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter With Decreased Piperaquine Sensitivity. J Infect Dis 216:468-476
Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao et al. (2017) Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol 2:1403-1414
Rahbari, Mahsa; Rahlfs, Stefan; Przyborski, Jude M et al. (2017) Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep 7:10449
Blasco, Benjamin; Leroy, Didier; Fidock, David A (2017) Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23:917-928
Dhingra, Satish K; Redhi, Devasha; Combrinck, Jill M et al. (2017) A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. MBio 8:
Gabryszewski, Stanislaw J; Dhingra, Satish K; Combrinck, Jill M et al. (2016) Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathog 12:e1005976

Showing the most recent 10 out of 51 publications