The picornaviruses are a family of small positive sense single stranded RNA viruses that cause a wide range of diseases at an annual cost well into the hundreds of million dollars. Members include acute hepatitis A virus, the heart disease causing coxsackie B3 virus, rhinoviruses that cause more than half the occurrences of the common cold, and the paralyzing poliovirus. These viruses share a life cycle where RNA replication and viral assembly occurs in large membrane anchored replication complexes assembled on the surfaces of vesicles derived from the endoplasmic reticulum. The replication process is driven by a virally encoded RNA dependent RNA polymerase (3Dpol) that is responsible for the synthesis of all viral RNA. This research project is focused on the structure and assembly of the viral replication centers and on structure-function studies of the viral polymerases to understand mechanisms that control of elongation rates and replication fidelity. We have solved multiple crystal structures of 3Dpol as elongation complexes with bound RNA and these structures revealed a novel mechanism by which RdRPs close their active sites for catalysis in response to nucleotide binding. In this upcoming project period we will use biophysical and structural biology methods to further our mechanistic understanding of RNA translocation by 3Dpol and to solve the structures of viral initiation and uridylylation complexes. We will also use single molecule microscopy and particle tracking methods to directly visualize the in vitro assembly of viral replication complexes onto supported lipid bilayers.

Public Health Relevance

The picornaviruses are a large family of viruses that cause a range of human diseases, including paralysis, hand foot and mouth disease in young children, and many cases of the common cold. These viruses replicate using a RNA-dependent RNA polymerase enzyme that is very error prone, resulting in viruses that can rapidly adapt to different cell types or become resistant to antiviral drugs. The primary focus of this project is to gain a structural understanding of the basic protein-protein and protein-RNA interactions that control the replication of these viruses. A secondary focus to understand why the viral polymerase is so error prone and use this information to interfere with its normal function in ways that could lead to new vaccines or antiviral drugs.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI059130-15
Application #
10088366
Study Section
Virology - A Study Section (VIRA)
Program Officer
Park, Eun-Chung
Project Start
2004-04-01
Project End
2022-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
15
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace et al. (2017) Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity. J Virol 91:
Peersen, Olve B (2017) Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 234:4-20
Kempf, Brian J; Peersen, Olve B; Barton, David J (2016) Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance. J Virol 90:8410-21
Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R (2016) Peptide Synthesis on a Next-Generation DNA Sequencing Platform. Chembiochem 17:1628-35
Karr, Jonathan P; Peersen, Olve B (2016) ATP Is an Allosteric Inhibitor of Coxsackievirus B3 Polymerase. Biochemistry 55:3995-4002
McDonald, Seth; Block, Andrew; Beaucourt, Stéphanie et al. (2016) Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo. J Biol Chem 291:13999-4011
Sexton, Nicole R; Smith, Everett Clinton; Blanc, Hervé et al. (2016) Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens. J Virol 90:7415-7428
Campagnola, Grace; McDonald, Seth; Beaucourt, Stéphanie et al. (2015) Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases. J Virol 89:275-86
Kao, C Cheng; Peersen, Olve B (2014) Editorial overview: Virus replication in animals and plants. Curr Opin Virol 9:iv-v
Sholders, Aaron J; Peersen, Olve B (2014) Distinct conformations of a putative translocation element in poliovirus polymerase. J Mol Biol 426:1407-19

Showing the most recent 10 out of 23 publications