With over 30 million HIV-1 infected individuals worldwide, and a rate of 4 new infections for every infected person who can receive anti-retroviral therapy (ART), there is still a critical need for developing and deploying preventive measures, including microbicides and prophylactic vaccines. However, the recent failure of a CTL- inducing adenovirus-based vaccine in human trials highlights our lack of understanding of what constitutes a protective immunity against this rapidly evolving virus, and how humans can effectively suppress ongoing virus replication. Understanding the interplay between the host immune response and the virus in natural infection is essential to designing novel strategies for circumventing viral immune escape and promoting endurable immunity. The major goal of this multi-investigator application is to define in detail the role that the innate and adaptive cellular immune systems play in modulating the process of HIV-1 transmission and viral control. This will be based on a comprehensive analyses of informative, initially HIV-1 discordant couples enrolled in Lusaka and Ndola, Zambia. By evaluating transmitted and non-transmitting couples with quarterly follow-up visits, our investigation will pursue two main goals. First, we will determine whether cellular immune responses influence heterosexual HIV-1 transmission through three related mechanisms: a) accumulation in the chronically infected index partners of CTL-induced viral mutations with fitness costs, b) the CTL response to conserved or un- mutated viral epitopes in exposed and uninfected partners among HLA-I discordant couples (compared to those that share HLA-I alleles), c) involvement of natural killer (NK) cell function in transmitting and non- transmitting couples . Second, we will assess the role that cellular immune responses can play in modifying control of early HIV-1 infection in seroconverters with known (epidemiologically-linked) virus donors. This work will focus on pathways and kinetics of CTL escape and reversion of both conventional and cryptic epitopes (epitopes encoded by alternate reading frames) across the viral proteome. The importance of NK and T-helper cell to the control of early HIV-1 containment will be tested as well. Collectively, these comprehensive and multidisciplinary studies will provide critical basic information about HIV- 1 immunopathogenesis at the time of and shortly after transmission. A clear understanding of innate and adaptive cellular immune responses to HIV-1 infection will benefit the ultimate goal of developing preventive tools that can reduce the further spread of HIV-1 infection.

Public Health Relevance

Understanding how HIV-1 interacts with the host immune system in order to escape its inhibitory effects during acute and early infection is critical if we are to devise preventive approaches to reduce the epidemic. The goals of this proposal address this problem directly by characterizing the impact of both the innate and adaptive cellular responses on transmission and acute/early infection. A clear understanding of this virus-host interplay will benefit the ultimate goal of developing preventive tools that can reduce the further spread of HIV- 1 infection.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
AIDS Immunology and Pathogenesis Study Section (AIP)
Program Officer
Sharma, Opendra K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Boppana, Sushma; Goepfert, Paul (2018) Understanding the CD8 T-cell response in natural HIV control. F1000Res 7:
Powers, Kimberly A; Price, Matthew A; Karita, Etienne et al. (2018) Prediction of extended high viremia among newly HIV-1-infected persons in sub-Saharan Africa. PLoS One 13:e0192785
Connolly, Sarah; Wall, Kristin M; Tang, Jianming et al. (2018) Fc-gamma receptor IIA and IIIA variants in two African cohorts: Lack of consistent impact on heterosexual HIV acquisition, viral control, and disease progression. Virology 525:132-142
Wiener, Howard W; Shrestha, Sadeep; Lu, Hailin et al. (2018) Immunogenetic factors in early immune control of human immunodeficiency virus type 1 (HIV-1) infection: Evaluation of HLA class I amino acid variants in two African populations. Hum Immunol 79:166-171
Peng, Binghao J; Carlson, Jonathan M; Liu, Michael K P et al. (2018) Antisense-Derived HIV-1 Cryptic Epitopes Are Not Major Drivers of Viral Evolution during the Acute Phase of Infection. J Virol 92:
Woodson, Evonne; Goldberg, Alec; Michelo, Clive et al. (2018) HIV transmission in discordant couples in Africa in the context of antiretroviral therapy availability. AIDS 32:1613-1623
Ende, Zachary; Deymier, Martin J; Claiborne, Daniel T et al. (2018) HLA Class I Downregulation by HIV-1 Variants from Subtype C Transmission Pairs. J Virol :
Haddad, Lisa B; Wall, Kristin M; Kilembe, William et al. (2018) Bacterial vaginosis modifies the association between hormonal contraception and HIV acquisition. AIDS 32:595-604
Joseph Davey, Dvora Leah; Wall, Kristin M; Kilembe, William et al. (2018) Difficult decisions: Evaluating individual and couple-level fertility intentions and HIV acquisition among HIV serodiscordant couples in Zambia. PLoS One 13:e0189869
Wall, Kristin M; Kilembe, William; Vwalika, Bellington et al. (2017) Risk of heterosexual HIV transmission attributable to sexually transmitted infections and non-specific genital inflammation in Zambian discordant couples, 1994-2012. Int J Epidemiol 46:1593-1606

Showing the most recent 10 out of 74 publications