Integration, catalyzed by the viral integrase protein, is an essential step in the life cycle of all retroviruses, and the integrase enzyme of human immunodeficiency virus type 1 (HIV-1) is a common target of the highly active antiretroviral therapies that are used to treat AIDS patients. Integrase strand transfer inhibitors (INSTIs) have been in clinical use since 2007, and the prior iteration of this renewal application critically discovered their mechanism of action. The target of the INSTIs is the integrase-viral DNA nucleoprotein complex, also known as the intasome, and the understanding of the mechanism of therapeutic action is greatly facilitated through the study of detailed 3- dimensional structure of drug targets. Although a high-resolution structure of the HIV-1 intasome has yet to be reported, we have reported numerous structures for the prototype foamy virus (PFV) intasome, which is also inhibited by the INSTIs. Using this model, we previously described that INSTIs work by ejecting the critical deoxyadenylate residue of viral DNA and its associated 3'-hydroxyl nucleophile from the integrase active site, disarming the integration machinery. During the current funding period we extended this observation to discover that INSTIs are structural mimics of the chemical attacking and leaving groups of the DNA strand transfer reaction. Herein we provide preliminary data for a new retroviral intasome structure, and we will use this new structural information together with the structure of the PFV intasome to refine our working model of the HIV-1 intasome, the clinically relevant INSTI target. We have discovered that the most intriguing integrase drug class since the INSTIs, the allosteric integrase inhibitors (ALLINIS), inhibits HIV-1 particle maturation, implying a structural role for integrase in HIV-1 particle morphogenesis. The role of integrase in forming the infectious HIV-1 structure will be elucidated using a variety of biochemical and genetic techniques. This line of research will culminate with a biologically realistic model for the HIV-1 intasome to aid novel INSTI development and with an acute vision of the mechanism of ALLINI action, which will inform the clinical development of this new and important anti-HIV drug class.

Public Health Relevance

Three-dimensional structures of therapeutically valuable drug targets are lynchpins of drug-design efforts. Herein we will solve the three-dimensional structure of a novel integrase-DNA complex, and utilize these results to inform three dimensional model building of the clinically relevant human immunodeficiency virus (HIV) integrase-DNA complex. We moreover will determine the structural role of HIV-1 integrase in forming the infectious virus particle, work that will critically inform the clinical development of the second class of integras inhibitors, the allosteric integrase inhibitors.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI070042-15
Application #
9882203
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Refsland, Eric William
Project Start
2006-04-01
Project End
2021-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
15
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Engelman, Alan N; Cherepanov, Peter (2017) Retroviral intasomes arising. Curr Opin Struct Biol 47:23-29
Grawenhoff, Julia; Engelman, Alan N (2017) Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem 8:32-44
Ballandras-Colas, Allison; Maskell, Daniel P; Serrao, Erik et al. (2017) A supramolecular assembly mediates lentiviral DNA integration. Science 355:93-95
Ballandras-Colas, Allison; Brown, Monica; Cook, Nicola J et al. (2016) Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530:358-61
Maskell, Daniel P; Renault, Ludovic; Serrao, Erik et al. (2015) Structural basis for retroviral integration into nucleosomes. Nature 523:366-9
Serrao, Erik; Ballandras-Colas, Allison; Cherepanov, Peter et al. (2015) Key determinants of target DNA recognition by retroviral intasomes. Retrovirology 12:39
Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J et al. (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:535-8
Nuñez, James K; Lee, Amy S Y; Engelman, Alan et al. (2015) Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519:193-8
Engelman, Alan; Cherepanov, Peter (2014) Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiol Spectr 2:
Engelman, Alan; Cherepanov, Peter (2014) Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiol Spectr 2:1-22

Showing the most recent 10 out of 33 publications