Cellular and molecular mechanisms mediating inflammatory vascular diseases are not well understood. Our previous work has centered on the role of innate immune signaling via Toll-like receptors (TLRs) in inflammatory diseases such as atherosclerosis and arteritis. We reported that injection of cell wall extracts from L. casei (LCCWE) cause coronary arteritis in mice via a TLR2- and MyD88-dependent mechanism, but cell wall extracts from the closely related species L. paracasei do not. Building on this work, our recent preliminary studies now indicate that LCCWE does not induce coronary arteritis in RAG1-/- mice, which lack both T cells and B cells, but does induce lesions in mice that lack only B cells. These important findings now implicate adaptive immune mechanisms (particularly T cells) in addition to innate immune mechanisms (TLR signaling and dendritic cells [DCs]) in the mechanism of LCCWE-induced immune arteritis. Here we propose studies to elucidate cellular and molecular immune mechanisms contributing to bacterial antigen-induced coronary arteritis in mice. Combining available published data with our recent preliminary studies, we propose studies with 3 Specific Aims to test the hypothesis for an expanded model of arteritis that involves both innate and adaptive immunity, that centrally involves both TLR-2 and MyD88-dependent DC and T cell activation.
Aim 1 will determine whether DCs participate in LCCWE-induced coronary arteritis in vivo and will evaluate how TLR signaling in DCs affects development of the pathology. We will quantify mature DCs at sites of coronary arteritis at different times and test whether DCs are essential for development of coronary arteritis by depleting DCs prior to injection of LCCWE using an established transgenic mouse model that produces temporary depletion of CD11c+ DCs (CD11c- DTR-GFP Tg+ mice). We will test whether transgenic mice expressing MyD88 only in CD11c+ DCs (in MyD88-null background) develop LCCWE-induced coronary arteritis.
Aim 2 will test whether TLR2- and/or MyD88-dependent signaling in hematopoietic cells, in non-hematopoietic cells, or both are essential for development of bacterial antigen-induced immune arteritis. We will create and test chimeras that express TLR2 or MyD88 only in bone marrow-derived cells or only in the rest of the animal.
Aim 3 will examine the role of the T cells and T cell subsets in LCCWE-induced coronary arteritis model using various KO mice. Significance: These studies should provide innovative mechanistic insights into the cellular and molecular underpinnings of various forms of immune-mediated arteritis, including the coronary arteritis seen in children with Kawasaki Disease.

Public Health Relevance

Innate immune responses play a role in Bacterial cell wall extract-induced coronary arteritis in a mouse model. Kawasaki Disease is a vasculitis involving children and results in over 20% incidence of developing coronary arteritis and aneurysms. The role of bacterial infections in vasculitis and immune arteritis and the molecular mechanisms involved in this process are not well-understood. The major goal of this application is to understand the molecular mechanisms and the role of innate and adaptive immunity that explain exactly how certain bacterial infections can lead to immune vasculitis and coronary arteritis using a mouse model. The successful completion of the proposed studies may allow us to develop novel treatment or preventive approaches to infection-mediated development of vasculitis and immune arteritis.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Davidson, Wendy F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cedars-Sinai Medical Center
Los Angeles
United States
Zip Code
Noval Rivas, Magali; Lee, Youngho; Wakita, Daiko et al. (2017) CD8+ T Cells Contribute to the Development of Coronary Arteritis in the Lactobacillus casei Cell Wall Extract-Induced Murine Model of Kawasaki Disease. Arthritis Rheumatol 69:410-421
Burns, Jane C; Koné-Paut, Isabelle; Kuijpers, Taco et al. (2017) Review: Found in Translation: International Initiatives Pursuing Interleukin-1 Blockade for Treatment of Acute Kawasaki Disease. Arthritis Rheumatol 69:268-276
Domiciano, Talita P; Wakita, Daiko; Jones, Heather D et al. (2017) Quercetin Inhibits Inflammasome Activation by Interfering with ASC Oligomerization and Prevents Interleukin-1 Mediated Mouse Vasculitis. Sci Rep 7:41539
Wakita, Daiko; Kurashima, Yosuke; Crother, Timothy R et al. (2016) Role of Interleukin-1 Signaling in a Mouse Model of Kawasaki Disease-Associated Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 36:886-97
Tremoulet, Adriana H; Jain, Sonia; Kim, Susan et al. (2016) Rationale and study design for a phase I/IIa trial of anakinra in children with Kawasaki disease and early coronary artery abnormalities (the ANAKID trial). Contemp Clin Trials 48:70-5
Lee, Youngho; Wakita, Daiko; Dagvadorj, Jargalsaikhan et al. (2015) IL-1 Signaling Is Critically Required in Stromal Cells in Kawasaki Disease Vasculitis Mouse Model: Role of Both IL-1? and IL-1?. Arterioscler Thromb Vasc Biol 35:2605-16
Chen, Shuang; Lee, Youngho; Crother, Timothy R et al. (2012) Marked acceleration of atherosclerosis after Lactobacillus casei-induced coronary arteritis in a mouse model of Kawasaki disease. Arterioscler Thromb Vasc Biol 32:e60-71
Lee, Youngho; Schulte, Danica J; Shimada, Kenichi et al. (2012) Interleukin-1ýý is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation 125:1542-50
Schulte, Danica J; Yilmaz, Atilla; Shimada, Kenichi et al. (2009) Involvement of innate and adaptive immunity in a murine model of coronary arteritis mimicking Kawasaki disease. J Immunol 183:5311-8
Yilmaz, Atilla; Arditi, Moshe (2009) Giant cell arteritis: dendritic cells take two T's to tango. Circ Res 104:425-7