Crimean-Congo hemorrhagic fever virus (CCHFV) causes a life-threatening tick-borne disease in humans. The disease presents as a severe form of hemorrhagic fever with a case fatality rate of 10?40%. CCHFV outbreaks have spanned a wide geographic area ranging from Western and Central Asia, the Middle East, Africa and Southern Europe. Increasing global temperatures, migratory birds, and the international livestock trade have all potentially contributed toward the spread of Hyalomma ticks?the primary vector for CCHFV. Expanding endemic zones, widespread morbidity and significant mortality make CCHFV an acute threat to public health and thus is listed as a NIAID Category A priority pathogen. The viral genome encodes a glycoprotein precursor that is processed into two structural glycoproteins?Gn and Gc?and two secreted glycoproteins?a mucin-like domain and GP38. Protective antibodies have been isolated that target Gc or GP38, suggesting that these two proteins should be given priority for vaccine development. Here we propose to engineer Gc- and GP38-based immunogens that focus the immune response onto broadly conserved epitopes that are capable of eliciting protective antibody responses. To accomplish our goal, we will structurally characterize CCHFV glycoproteins and their interactions with human-derived antibodies, rationally engineer vaccine antigens based in part on the structural information, and characterize the immune responses elicited by these antigens in animal models. These results will be used to guide further improvements of the immunogens, including display on self-assembling multi-valent nanoparticles, and the most promising candidates will be evaluated in a lethal murine model of CCHFV challenge. Given our expertise, unique reagents, and preliminary data, we are confident that we can deliver a state-of-the-art subunit vaccine candidate with the potential to induce cross-reactive protective antibodies, thereby satisfying an unmet need against this NIAID Category A tick-borne pathogen.

Public Health Relevance

Crimean-Congo hemorrhagic fever is the most widespread tick-borne viral disease in humans with case- fatality rates of 10?40%. Here we propose to employ structure-based vaccine design principles to engineer immunogens that induce cross-reactive protective antibodies. Our studies will provide insight into the structures and antigenicity of CCHFV glycoproteins and will deliver a bona fide vaccine candidate against a NIAID Category A pathogen.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI152246-01
Application #
9990446
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Alarcon, Rodolfo M
Project Start
2020-06-25
Project End
2025-05-31
Budget Start
2020-06-25
Budget End
2021-05-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas Austin
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
170230239
City
Austin
State
TX
Country
United States
Zip Code
78759