Frequent, accurate, and highly sensitive HIV-1 viral load monitoring is a critical component of AIDS antiretroviral therapy, a tool for reducing the incidence of mother-to-child HIV transmission, and a required element of routine diagnostic testing to make people aware of their HIV status. Although enormous research and product development effort has been applied to point-of-care viral load testing, the current paradigm of nucleic acid tests and antigen assays continues to demonstrate fundamental limitations that derive from their inherent complexity and lack of robustness, which in turn impact their costs and practicality for adoption in resource-limited settings. We seek to address an important gap in the capabilities of existing technologies through a combination of three innovations to yield an integrated, rapid, simple, ultrasensitive, highly selective, robust, and inexpensive system for quantitative viral load measurement. First, we utilize microfluidic separation of virions from whole blood, yielding a 10-50 l plasma sample from 20-100 l of whole blood in <10 min, with >95% virus extraction efficiency. Second, we will achieve ultraselective recognition of intact HIV virions from the resulting serum using designer DNA nanostructures that take the form of a macromolecular ?net? whose vertices are a precise mechanical match to the spacing and positioning of the spike gp120 protein matrix displayed on the HIV outer surface. The DNA net vertices incorporate nucleic acid aptamer probes that have been selected for selectively targeting the HIV gp120, resulting in multiple sites of high affinity attachment, and thus the ?net? can be used as an effective capture probe when covalently attached to a photonic crystal biosensor surface. Finally, we will utilize a newly-invented form of biosensor microscopy called Photonic Resonator Interference Scattering Microscopy (PRISM) in which the photonic crystal surface amplifies laser light scattering from captured intact virions, enabling each one to be counted with high signal-to-noise ratio. Because PRISM does not require labels or enzymatic amplification, our approach enables dynamic, real-time counting of captured virus with digital precision and ultrasensitivity. In the proposed project, we will integrate viral separation and the photonic crystal biosensor into a plastic cartridge and develop a rapid workflow that will be simple and rapid for compatibility with point-of-care settings, with the goal of yielding a result in <30 minutes sample-to-answer.
Our Aims i nclude development of a point-of-care version of the PRISM instrument, and statistically robust characterization of detection limits, repeatability, and robustness. Our study will conclude with validation of the system using clinical specimens and direct comparison against gold-standard laboratory RT-PCR analysis.

Public Health Relevance

The goal of the project is to develop and clinically validate an ultrasensitive, selective, rapid, and simple HIV-1 viral load test that can be performed in point-of-care settings. Our integrated approach first separates viral particles from whole blood with a microfluidic filter, followed by capture and counting intact virions. Specific recognition of HIV is achieved through designer DNA ?net? nanostructures that match the spatial pattern of envelope glycoprotein gp120 on the virus outer surface, where the DNA net is immobilized upon a photonic crystal biosensor surface, enabling a new form of microscopy that enhances viral light scattering intensity to count the captured HIV with digital precision. In contrast to nucleic acid tests that require sample pre-processing and enzymatic amplification, our direct approach is performed in a single step with no added reagents, yielding a result in less than 30 minutes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI159454-01
Application #
10196015
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Crawford, Keith W
Project Start
2021-01-21
Project End
2025-12-31
Budget Start
2021-01-21
Budget End
2021-12-31
Support Year
1
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305