Accelerated wear and tear of cartilage in osteoarthritis results in its eventual destruction and joint dysfunction. To understand this degeneration process, relationships must be found between the material properties of cartilage and its biochemistry and microscopic organization. In addition, an understanding must be gained of the balance between synthesis (repair) and degradation. We wish to explore two important questions in this regard: First, how do the various, subtle matrix degradative processes affect the intrinsic biomechanical and electromechanical properties of cartilage? Second, how do environmental forces, in turn, affect cartilage's biosynthetic response? We suggest, first, that electromechanical experiments may provide a sensitive measure of certain degradative changes in cartilage proteoglycans. Furthermore, mechanical and electrical stresses may play an important role in matrix synthesis, and hence in the balance between synthesis and repair. We propose to test the first hypothesis by correlating changes in the streaming potential and stiffness of fresh calf articular cartilage with controlled proteoglycan degradative processes induced by specific enzymatic treatments of the tissue. We propose to test the second hypothesis in the same experimental configuration by correlating proteoglycan and collagen synthetic response to applied mechanical and electrical stresses, using calf cartilage in organ culture.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases (NIADDK)
Type
Research Project (R01)
Project #
5R01AM033236-02
Application #
3152754
Study Section
Orthopedics and Musculoskeletal Study Section (ORTH)
Project Start
1984-01-01
Project End
1986-12-31
Budget Start
1985-01-01
Budget End
1985-12-31
Support Year
2
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code