Our goal is to understand the role of molecular motions in the generation of force during muscle contraction, focusing on the proposed rotational motions of myosin heads (crossbridges) on the thick filament relative to the actin-containing thin filament. Direct measurements will be made of the orientation, rotational motion, and translational motion of spin-labels and optical probes attached selectively and rigidly to myosin heads, using spectroscopic instrumentation, theory, and methods that we are developing. Following preliminary work on purified myosin and myofibrils, the major emphasis will be on work with glycerinated fibers. Electron paramagnetic resonance (EPR) experiments on spin-label attached to the myosin head in oriented fibers will be performed to study the orientation distribution of heads in various physiological states (rigor, relaxation, isometric tension, etc.). Saturation transfer EPR experiments on the same preparation will provide information about the time-averaged rotational motion of the heads. Using pulsed laser excitation, time-resolved rotational motions of dyes attached to myosin heads will be detected by absorption or emission antisotrophy. Analogous experiments will be performed on actin motions. Finally, fluorescence energy transfer from labeled myosin heads to labeled actin will provide a direct probe of translational motion of myosin heads relative to actin subunits. The results should have a major impact on muscle biophysics, and the spectroscopic methods developed should have much broader applications.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR032961-04
Application #
3156464
Study Section
Biophysics and Biophysical Chemistry B Study Section (BBCB)
Project Start
1983-12-01
Project End
1988-11-30
Budget Start
1986-12-01
Budget End
1987-11-30
Support Year
4
Fiscal Year
1987
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
Schools of Medicine
DUNS #
168559177
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Guhathakurta, Piyali; Prochniewicz, Ewa; Grant, Benjamin D et al. (2018) High-throughput screen, using time-resolved FRET, yields actin-binding compounds that modulate actin-myosin structure and function. J Biol Chem 293:12288-12298
Rohde, John A; Roopnarine, Osha; Thomas, David D et al. (2018) Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. Proc Natl Acad Sci U S A 115:E7486-E7494
Muretta, Joseph M; Reddy, Babu J N; Scarabelli, Guido et al. (2018) A posttranslational modification of the mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its mitotic function. Proc Natl Acad Sci U S A 115:E1779-E1788
Rohde, John A; Thomas, David D; Muretta, Joseph M (2017) Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke. Proc Natl Acad Sci U S A 114:E1796-E1804
Elam, W Austin; Cao, Wenxiang; Kang, Hyeran et al. (2017) Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J Biol Chem 292:19565-19579
Guhathakurta, Piyali; Prochniewicz, Ewa; Roopnarine, Osha et al. (2017) A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure. Biophys J 113:91-100
Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel et al. (2016) Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics. Proc Natl Acad Sci U S A 113:3233-8
Avery, Adam W; Crain, Jonathan; Thomas, David D et al. (2016) A human ?-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding. Sci Rep 6:21375
Swanson, Carter J; Sommese, Ruth F; Petersen, Karl J et al. (2016) Calcium Stimulates Self-Assembly of Protein Kinase C ? In Vitro. PLoS One 11:e0162331
Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio et al. (2015) Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition. Mol Biosyst 11:2167-79

Showing the most recent 10 out of 102 publications