Our goal is to determine the role of actin-myosin structural dynamics in the molecular mechanism of muscle contraction. Structures, dynamics, and interactions of myosin and actin are fundamental in understanding mechanisms of contraction and its regulation. We focus on dynamic interactions of actin with the catalytic domain of myosin, and extend this investigation to include myosin's light-chain domain and myosin binding protein-C (CPro). To gain insight into structure-functional correlation, we vary active-site ligands, protein isoforms, phosphorylation, mutation, crosslinking, and drugs. Our approach is distinguished by our emphasis on dynamics as well as structure, and on the elusive weak-binding states of actomyosin as well as the more stable strong-binding states. Our core technology is a unique combination of site-directed protein labeling, coupled with high-resolution and time-resolved spectroscopies, to test and revise detailed mechanistic models for the functional interactions of myosin and actin as they transition from weak- to strong- binding states in force generation.
In Aim 1, fundamental structural dynamics of the myosin catalytic domain (CD) is investigated, using probes designed to test and revise mechanistic models of actin-activated force generation with high resolution in real time. We seek to understand temporal and spatial coordination of this complex motor.
In Aim 2, allosteric changes propagated from the light chain domain (LCD) through the CD to actin will be mapped by probes, with emphasis on regulation by protein isoform and phosphorylation. Similarly, Aim 3 uses the insights of the first two aims to assess structural dynamics of the actomyosin weak and strong interactions perturbed by the presence, isoform, and phosphorylation of CPro. Feasibility (preparations, preliminary data) has been established independently for all three aims, so they are not restrictively interdependent. Instead, the three aims are synergistic, in that they share reagents and are strategically aligned to strengthen each other with new discoveries. Our 3 aims arise from ten novel hypotheses, based on findings from the previous period, converging toward a new synthesis. The assembled research team brings together a powerful combination of techniques and concepts from molecular genetics and cell culture to biophysical spectroscopy and computational simulation, to solve the molecular mechanisms of muscle contraction and regulation. This project remains grounded in fundamental biophysical mechanisms, but it is increasingly clear that the tools developed in this project can pave the way for design of molecular therapies in muscle disease. Once we understand the functions of actomyosin and its regulation, we can look to control these functions. It is anticipated that by th end of the next funding period, this project will generate the most detailed and cohesive structure-function model of muscle contraction and regulation to date, and projects will spin off involving the rational design of gene and drug therapies. More generally, the lessons learned in this project are applicable to a wide range of problems in the biophysics of muscle and molecular motors.

Public Health Relevance

This project aims to determine the molecular requirements for healthy muscle function, in order to pave the way for rational development of therapies for treating muscle diseases, including heart disease and muscular dystrophy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR032961-32
Application #
8824872
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Boyce, Amanda T
Project Start
1983-12-01
Project End
2019-02-28
Budget Start
2015-03-01
Budget End
2016-02-29
Support Year
32
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Biochemistry
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Guhathakurta, Piyali; Prochniewicz, Ewa; Grant, Benjamin D et al. (2018) High-throughput screen, using time-resolved FRET, yields actin-binding compounds that modulate actin-myosin structure and function. J Biol Chem 293:12288-12298
Rohde, John A; Roopnarine, Osha; Thomas, David D et al. (2018) Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. Proc Natl Acad Sci U S A 115:E7486-E7494
Muretta, Joseph M; Reddy, Babu J N; Scarabelli, Guido et al. (2018) A posttranslational modification of the mitotic kinesin Eg5 that enhances its mechanochemical coupling and alters its mitotic function. Proc Natl Acad Sci U S A 115:E1779-E1788
Rohde, John A; Thomas, David D; Muretta, Joseph M (2017) Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke. Proc Natl Acad Sci U S A 114:E1796-E1804
Elam, W Austin; Cao, Wenxiang; Kang, Hyeran et al. (2017) Phosphomimetic S3D cofilin binds but only weakly severs actin filaments. J Biol Chem 292:19565-19579
Guhathakurta, Piyali; Prochniewicz, Ewa; Roopnarine, Osha et al. (2017) A Cardiomyopathy Mutation in the Myosin Essential Light Chain Alters Actomyosin Structure. Biophys J 113:91-100
Colson, Brett A; Thompson, Andrew R; Espinoza-Fonseca, L Michel et al. (2016) Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics. Proc Natl Acad Sci U S A 113:3233-8
Avery, Adam W; Crain, Jonathan; Thomas, David D et al. (2016) A human ?-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding. Sci Rep 6:21375
Swanson, Carter J; Sommese, Ruth F; Petersen, Karl J et al. (2016) Calcium Stimulates Self-Assembly of Protein Kinase C ? In Vitro. PLoS One 11:e0162331
Trivedi, Darshan V; Muretta, Joseph M; Swenson, Anja M et al. (2015) Direct measurements of the coordination of lever arm swing and the catalytic cycle in myosin V. Proc Natl Acad Sci U S A 112:14593-8

Showing the most recent 10 out of 102 publications