Melanin protects the skin against ultraviolet radiation-induced damage, thus reducing the risk of cutaneous cancers. Our primary objective is to elucidate the mechanisms that regulate melanin synthesis and characterize the pathogenesis of pigment-related disorders such as albinism. We will focus our efforts on the OCA2 gene, which is mutated in oculocutaneous albinism type 2, the most common form of albinism worldwide. The OCA2 gene is also linked to skin color variation and melanoma susceptibility. The precise function of the OCA2 gene product (P) is not known. We propose that P regulates maturation of tyrosinase, the key melanogenic enzyme, by redistributing intracellular glutathione (GSH) to the endoplasmic reticulum (ER). Mature tyrosinase has a specific tertiary structure, acquired by extensive folding in the ER, and GSH is required during this process. In the absence of functional P protein, tyrosinase fails to mature, significantly reducing melanin synthesis and skin pigmentation.
In Specific Aim 1, we will explore the role of GSH and the P protein in tyrosinase folding. Single nucleotide polymorphisms (SNPs) in the OCA2 gene have been associated with variation in skin and eye color as well as susceptibility to melanoma. We will therefore determine the impact of known coding region polymorphisms on P protein function. We predict that these SNPs reduce P activity such that melanin production is reduced to varying degrees, contributing to the broad range of normal skin pigmentation and accounting for association between SNPs and melanoma risk. OCA2 mutations cause accumulation of tyrosinase in the ER, triggering the unfolded protein response (UPR), a determinant of cell fate.
In Specific Aim 2, we will characterize the melanocyte UPR and determine how p-null melanocytes evade apoptosis that is typical of sustained UPR activation. UPR- mediated cell death has been implicated in diabetes and retinitis pigmentosa, and been targeted for the design of melanoma therapeutics. Our studies may identify novel UPR targets for treatment of these diseases.
In Specific Aim 3 we will screen for small molecules that compensate for lack of P protein function, determine the extent of phenotype correction by hit compounds and characterize their mechanism/s of action. We have successfully identified agents that modulate pigmentation in wild-type cells using this approach and recently identified 16 compounds that induce pigmentation in p-null cells. Selection criteria were: ability to induce melanin synthesis, lack of toxicity and molecular weight <500 to facilitate percutaneous penetration. Validated compounds will be tested on p-null mice to confirm increased pigmentation after topical application. These agents will be vital for treatment of OCA2 and may augment normal skin pigmentation. These experiments will greatly advance our understanding of the pathogenesis of OCA2 and regulation of normal skin pigmentation (a major risk factor for melanoma). We may also identify novel therapeutics for albinism and UPR-related targets for the treatment of diabetes, retinitis pigmentosa and melanoma.

Public Health Relevance

Mutations in the oculocutaneous albinism type 2 (OCA2) gene, which account for the most common form of albinism worldwide, are particularly prevalent among individuals of African-American (1 in 10, 000) and Native American (1 in 28 to 1 in 6,500) descent, while polymorphisms associate with variation in skin and eye pigmentation and susceptibility to melanoma, the deadliest form of skin cancer. Our studies aim to characterize a role for OCA2 to improve our understanding of albinism as well as normal skin pigmentation and to identify pharmacologic therapies for OCA.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Baker, Carl
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Schools of Medicine
New York
United States
Zip Code
De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela (2017) Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1. J Invest Dermatol 137:457-465
De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C (2017) Identification of Novel G Protein-Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism. Invest Ophthalmol Vis Sci 58:3118-3126
Arowojolu, Omotayo A; Orlow, Seth J; Elbuluk, Nada et al. (2017) The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone. Exp Dermatol 26:637-644
Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J (2016) Recent advances in understanding vitiligo. F1000Res 5:
Murase, Daiki; Hachiya, Akira; Fullenkamp, Rachel et al. (2016) Variation in Hsp70-1A Expression Contributes to Skin Color Diversity. J Invest Dermatol 136:1681-1691
Doudican, Nicole A; Wen, Shih Ya; Mazumder, Amitabha et al. (2014) Identification of agents that promote endoplasmic reticulum stress using an assay that monitors luciferase secretion. J Biomol Screen 19:575-84
Cheng, Tsing; Orlow, Seth J; Manga, Prashiela (2013) Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes. Pigment Cell Melanoma Res 26:826-34
Wang, Claire Q F; Akalu, Yemsratch T; Suarez-Farinas, Mayte et al. (2013) IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. J Invest Dermatol 133:2741-2752
Toosi, Siavash; Orlow, Seth J; Manga, Prashiela (2012) Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol 132:2601-9
Manga, Prashiela; Orlow, Seth J (2011) Informed reasoning: repositioning of nitisinone to treat oculocutaneous albinism. J Clin Invest 121:3828-31

Showing the most recent 10 out of 13 publications