This application is an extension of R01-AR041880, funded by NIAMS. The funded study examines mechanisms that facilitate maturation of tyrosinase, the key catalytic enzyme required for melanin synthesis in melanocytes. The amount of melanin produced by melanocytes and subsequent skin pigmentation are dependent upon tyrosinase levels and activity. We have shown that when tyrosinase is retained in the endoplasmic reticulum (ER), as is the case in 3 genetically distinct forms of oculocutaneous albinism (OCA), the unfolded protein stress response (UPR) is activated. The resulting signal cascade, which has been implicated in the pathogenesis of type 1 diabetes, rheumatoid arthritis and some cancers, can trigger apoptosis. We have demonstrated that melanocytes can adapt to UPR activation, and Specific Aim 2 of our R01 investigates mechanisms underlying this adaptation. The ability of melanocytes to adapt to environmental assault is key to continued skin pigmentation and the resulting protection provided by melanin against ultraviolet light. Our preliminary data demonstrate that chemical agents that modulate the UPR alter the levels of melanin production in wildtype and albino melanocytes. In addition, the UPR is also activated in melanocytes by chemicals that trigger vitiligo, an acquired autoimmune disorder, and small molecules targeting UPR regulators can alter sensitivity to these toxins. Thus, developing a clear understanding of UPR activation in melanocytes may allow for the development of improved therapies for pigmentation disorders such as albinism and vitiligo. We have established a new collaboration that includes Drs. Orlow and Manga, the principal and co-investigator of the funded R01 respectively, and Dr. Timothy Cardozo, a pharmacologist and computational structural biologist specializing in drug discovery and molecular design. We propose to develop novel small molecules that modulate UPR activity by targeting specific proteins involved in the UPR signaling cascade. Dr. Cardozo has identified the first reported specific inhibitors of the key UPR regulator PERK. A similar approach will be used to develop small molecule inhibitors of UPR regulator IRE1alpha and GCN2, which shares targets with PERK. We will explore the effects of these novel inhibitors on melanocyte function and their utility in delineating the melanocyte UPR. Furthermore, we will assess their potential for use in the treatment of hyper and/or hypopigmentation as well as disorders of melanocyte viability such as vitiligo.

Public Health Relevance

Activation of the unfolded protein stress response (UPR) may play a key role in adaptation of melanocytes in the skin to environmental assault and in determining their capacity to produce melanin, the pigment that provides protection against ultraviolet light. We propose to develop novel small molecules that modulate UPR activity by targeting specific regulators of the UPR signaling cascade, explore their effects on melanocyte function and asses their potential use in the treatment of pigmentation disorders such as albinism and vitiligo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
3R01AR041880-19S1
Application #
8701574
Study Section
Special Emphasis Panel (ZAR1)
Program Officer
Tseng, Hung H
Project Start
1994-03-15
Project End
2015-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
19
Fiscal Year
2014
Total Cost
Indirect Cost
Name
New York University
Department
Dermatology
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10016
De Filippo, Elisabetta; Schiedel, Anke C; Manga, Prashiela (2017) Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1. J Invest Dermatol 137:457-465
De Filippo, Elisabetta; Manga, Prashiela; Schiedel, Anke C (2017) Identification of Novel G Protein-Coupled Receptor 143 Ligands as Pharmacologic Tools for Investigating X-Linked Ocular Albinism. Invest Ophthalmol Vis Sci 58:3118-3126
Arowojolu, Omotayo A; Orlow, Seth J; Elbuluk, Nada et al. (2017) The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone. Exp Dermatol 26:637-644
Manga, Prashiela; Elbuluk, Nada; Orlow, Seth J (2016) Recent advances in understanding vitiligo. F1000Res 5:
Murase, Daiki; Hachiya, Akira; Fullenkamp, Rachel et al. (2016) Variation in Hsp70-1A Expression Contributes to Skin Color Diversity. J Invest Dermatol 136:1681-1691
Doudican, Nicole A; Wen, Shih Ya; Mazumder, Amitabha et al. (2014) Identification of agents that promote endoplasmic reticulum stress using an assay that monitors luciferase secretion. J Biomol Screen 19:575-84
Cheng, Tsing; Orlow, Seth J; Manga, Prashiela (2013) Loss of Oca2 disrupts the unfolded protein response and increases resistance to endoplasmic reticulum stress in melanocytes. Pigment Cell Melanoma Res 26:826-34
Wang, Claire Q F; Akalu, Yemsratch T; Suarez-Farinas, Mayte et al. (2013) IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. J Invest Dermatol 133:2741-2752
Toosi, Siavash; Orlow, Seth J; Manga, Prashiela (2012) Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol 132:2601-9
Manga, Prashiela; Orlow, Seth J (2011) Informed reasoning: repositioning of nitisinone to treat oculocutaneous albinism. J Clin Invest 121:3828-31

Showing the most recent 10 out of 13 publications