Mycoplasma arthritidis causes a naturally-occurring, migratory polyarthritis in rodents that can bear a close histological resemblance to rheumatoid arthritis of humans. M. arthritidis-induced arthritis has been extensively studied as a model for arthritides caused by infectious agents and also as a model for examining the role(s) of superantigens in the development of autoimmunity. All strains of M. arthritidis are thought to produce the superantigen MAM, but many MAM-producing strains are relatively avirulent and factors other than MAM must be required for the development of arthritis. We have recently determined that one of these factors is the newly-discovered lysogenic bacteriophage MAV1. We have shown that avirulent strains of M. arthritidis become virulent when lysogenized with MAV1. MAV1 DNA integrates into the M. arthritidis chromosome at any of numerous sites, and the site of integration does not correlate with virulence. Therefore, the increase in virulence associated with MAV1 does not result from changes in regulation of chromosomal genes flanking MAV1 DNA inserts. Accordingly, we propose that MAV1 encodes a determinant that is involved with the development of arthritis. MAV1 is the first factor from any mycoplasma that has been shown to be associated with arthritis, and elucidation of this factor is important for fulfillment of the long-range goals of understanding the mechanisms of mycoplasma- induced arthritis and the role of phages as carriers of bacterial arthritogenic determinants. Factors analogous to the MAV1-encoded determinant may be prevalent in bacteria and mycoplasmas that cause arthritis in humans, and these factors may be important as vaccine candidates and as targets for drug design. The goal of the present proposal is to identify and characterize the MAV1-encoded determinant.
Specific Aim 1 is to determine the complete nucleotide sequence of the 16 kb MAV1 DNA genome. By comparing the amino acid sequences of the predicted MAV1 gene products with those of the GenBank/EMBL databased, candidate MAV1 virulence determinants will be identified.
Specific Aim 2 is to develop M. arthritidis gene transfer systems. Procedures for genetic transformation and vectors for transferring genetic material will be established.
Specific Aim 3 is to evaluate the arthritogenic significance of the candidate virulence determinants. The candidate virulence determinants will be inserted into the M. arthritidis chromosome and/or specifically mutated to construct strains that will be examined for arthritogenicity in the rat model and used to conclusively identify the MAV1 genes that are involved in the development of arthritis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR044252-03
Application #
2899910
Study Section
Bacteriology and Mycology Subcommittee 2 (BM)
Program Officer
Serrate-Sztein, Susana
Project Start
1997-04-01
Project End
2000-03-31
Budget Start
1999-04-01
Budget End
2000-03-31
Support Year
3
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Alabama Birmingham
Department
Veterinary Sciences
Type
Schools of Dentistry
DUNS #
004514360
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Jordan, David S; Daubenspeck, James M; Laube, Audra H et al. (2013) O-linked protein glycosylation in Mycoplasma. Mol Microbiol 90:1046-53
Jordan, David S; Daubenspeck, James M; Dybvig, Kevin (2013) Rhamnose biosynthesis in mycoplasmas requires precursor glycans larger than monosaccharide. Mol Microbiol 89:918-28
Luo, Wenyi; Tu, Anh-Hue T; Cao, Zuhua et al. (2009) Identification of an isoschizomer of the HhaI DNA methyltransferase in Mycoplasma arthritidis. FEMS Microbiol Lett 290:195-8
Dybvig, Kevin; Zuhua, Cao; Lao, Ping et al. (2008) Genome of Mycoplasma arthritidis. Infect Immun 76:4000-8
Luo, Wenyi; Yu, Huilan; Cao, Zuhua et al. (2008) Association of Mycoplasma arthritidis mitogen with lethal toxicity but not with arthritis in mice. Infect Immun 76:4989-98
Dybvig, Kevin; Cao, Z; French, C Todd et al. (2007) Evidence for type III restriction and modification systems in Mycoplasma pulmonis. J Bacteriol 189:2197-202
Tu, A-H T; Clapper, B; Schoeb, T R et al. (2005) Association of a major protein antigen of Mycoplasma arthritidis with virulence. Infect Immun 73:245-9
Clapper, Brenda; Tu, Anh-Hue T; Elgavish, Ada et al. (2004) The vir gene of bacteriophage MAV1 confers resistance to phage infection on Mycoplasma arthritidis. J Bacteriol 186:5715-20
Clapper, Brenda; Tu, Anh-Hue T; Simmons, Warren L et al. (2004) Bacteriophage MAV1 is not associated with virulence of Mycoplasma arthritidis. Infect Immun 72:7322-5
Washburn, Leigh R; Bird, Daniel W; Dybvig, Kevin (2003) Restoration of cytoadherence to an adherence-deficient mutant of Mycoplasma arthritidis by genetic complementation. Infect Immun 71:671-5

Showing the most recent 10 out of 14 publications