Skeletal regenerative medicine promises to mitigate age-related bone loss and support fracture healing but requires manipulation of biological properties of osteogenic progenitor cells. Osteogenic cells must sustain their phenotype during lineage-expansion yet undergo a number of mitotic cell cycles to generate the requisite number of cells for proper tissue-organization. The proposed study will examine fundamental mechanisms that ensure cells retain a post-mitotic molecular memory of the bone phenotype. The central hypothesis of our study is that key mRNAs for osteogenic factors are passed on to daughter cells during mitosis as a component of a non-genomic epigenetic mechanism and that selected microRNAs (miRs) attenuate the translation of these transmitted mRNAs. Our hypothesis is based on a robust set of preliminary data showing that the osteogenic master regulator Runx2 is controlled by mitotic miRs in osteoblastic cell lines. Based on these and other preliminary data, we will (i) characterize the full complement of miRs that suppress expression of Runx2 in proliferating osteogenic cells, as well as begin characterization of mRNAs and cognate miRs during mitosis;(ii) examine miR dependent changes in fidelity of cell growth, survival and lineage-direction in proliferating osteoblasts, and (iii) characterize the physiological role of selected mitosis-related miRs during skeletal development in vivo. Validation of this concept would (i) establish a major new dimension in cell cycle regulation, (ii) reveal a previously unrecognized function for miRs during mitosis, (iii) define a novel molecular mechanism for biological control of gene expression in lineage-committed cells, and (iv) identify specific miRs that are transmitted to osteogenic progeny cells upon mitosis ('mito-miRs'). From a molecular therapeutic perspective, these miRs permit generation of epigenomic agents that control cellular inheritance by targeting cell fate determining factors which mediate mesenchymal stem cell expansion and differentiation.

Public Health Relevance

Bone formation requires expansion and differentiation of osteoprogenitor cells. Osteogenic cells pass on genetic (chromosomes) and epigenetic information (e.g., CpG methylation, histone codes and bookmarking by transcription factors) to progeny cells to maintain growth potential and osteogenic phenotype identity. We will characterize a fundamentally novel RNA based epigenetic mechanism involving mitotic co-transmission of mRNAs and cognate microRNAs during mitosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
2R01AR049069-08A1
Application #
8248526
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Chen, Faye H
Project Start
2002-07-01
Project End
2016-08-31
Budget Start
2011-09-17
Budget End
2012-08-31
Support Year
8
Fiscal Year
2011
Total Cost
$370,125
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Araya, Héctor F; Sepulveda, Hugo; Lizama, Carlos O et al. (2018) Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 119:8204-8219
Samsonraj, Rebekah M; Dudakovic, Amel; Manzar, Bushra et al. (2018) Osteogenic Stimulation of Human Adipose-Derived Mesenchymal Stem Cells Using a Fungal Metabolite That Suppresses the Polycomb Group Protein EZH2. Stem Cells Transl Med 7:197-209
Camilleri, Emily T; Dudakovic, Amel; Riester, Scott M et al. (2018) Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem 293:19001-19011
Morrey, Mark E; Sanchez-Sotelo, Joaquin; Lewallen, Eric A et al. (2018) Intra-articular injection of a substance P inhibitor affects gene expression in a joint contracture model. J Cell Biochem 119:1326-1336
Lewallen, Eric A; Salib, Christopher G; Trousdale, William H et al. (2018) Molecular pathology of total knee arthroplasty instability defined by RNA-seq. Genomics 110:247-256
Sterner, Rosalie M; Kremer, Kimberly N; Dudakovic, Amel et al. (2018) Tissue-Nonspecific Alkaline Phosphatase Is Required for MC3T3 Osteoblast-Mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis. J Immunol 201:1086-1096
Soreide, Endre; Denbeigh, Janet M; Lewallen, Eric A et al. (2018) Fibrin glue mediated delivery of bone anabolic reagents to enhance healing of tendon to bone. J Cell Biochem 119:5715-5724
Bravo, Dalibel; Salduz, Ahmet; Shogren, Kristen L et al. (2018) Decreased local and systemic levels of sFRP3 protein in osteosarcoma patients. Gene 674:1-7
Su, Yan; Denbeigh, Janet M; Camilleri, Emily T et al. (2018) Extracellular matrix protein production in human adipose-derived mesenchymal stem cells on three-dimensional polycaprolactone (PCL) scaffolds responds to GDF5 or FGF2. Gene Rep 10:149-156
Paradise, Christopher R; Galeano-Garces, Catalina; Galeano-Garces, Daniela et al. (2018) Molecular characterization of physis tissue by RNA sequencing. Gene 668:87-96

Showing the most recent 10 out of 171 publications