The mechanical competence of bone is determined by the amount of bone per unit volume (also referred to as apparent density), its structural arrangement and its chemical make-up. Age and osteoporosis-related deterioration of the bone has typically been attributed to a net loss of bone mass and architectural impairment but it has been widely assumed that the bone's intrinsic material properties remain invariant. This notion is in conflict with a substantial body of literature indicating significant decreases in the degree of mineralization of bone (DMB) following ovariectomy and increased DMB in response to antiresorptive treatment. Such a behavior is plausible since the bone turnover rate determines the average age of the bone and younger bone is known to be hypomineralized. Paralleling changes in DMB are the bone's biomechanical properties in that decreased DMB is associated with decreased static strength and Young's modulus. The extent to which mechanical failure in the form of fractures is related to changes in the bone's mineral content is not known. Unfortunately, DMB cannot currently be measured noninvasively. However, since DMB is related to the bone's osteoid water content, information on mineral density can be obtained indirectly. There is evidence that during mineralization some of the matrix water is displaced and its space taken by mineral in such a manner that osteoid volume remains constant. In this proposal we advance the hypothesis that there is an inverse relationship between osteoid water and bone mineral volume and that a measure of DMB can be obtained indirectly by quantitative proton magnetic resonance of solid bone. We provide evidence in preliminary work that decreased mineralization is associated with higher water content and that the matrix water can be imaged with appropriate imaging techniques in intact bone. In two disease models in which DMB is expected to be altered (rabbit osteomalacia and rat ovariectomy) we test the hypothesis using proton and 31P NMR that changes in DMB occur at the expense of a commensurate change in bone water and further that increased bone water decreases static strength and elastic modulus. The long-term goal of this project is to provide a noninvasive method for probing the intrinsic properties of bone in laboratory animals and ultimately in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR050068-02
Application #
6800153
Study Section
Diagnostic Radiology Study Section (RNM)
Program Officer
Lester, Gayle E
Project Start
2003-09-09
Project End
2007-08-31
Budget Start
2004-09-01
Budget End
2005-08-31
Support Year
2
Fiscal Year
2004
Total Cost
$307,436
Indirect Cost
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Zhao, Xia; Song, Hee Kwon; Wehrli, Felix W (2018) In vivo bone 31 P relaxation times and their implications on mineral quantification. Magn Reson Med 80:2514-2524
Lee, Hyunyeol; Zhao, Xia; Song, Hee Kwon et al. (2018) Rapid dual-RF, dual-echo, 3D ultrashort echo time craniofacial imaging: A feasibility study. Magn Reson Med :
Li, Cheng; Magland, Jeremy F; Zhao, Xia et al. (2017) Selective in vivo bone imaging with long-T2 suppressed PETRA MRI. Magn Reson Med 77:989-997
Zhao, Xia; Song, Hee Kwon; Seifert, Alan C et al. (2017) Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI. PLoS One 12:e0173995
Seifert, Alan C; Wehrli, Felix W (2016) Solid-State Quantitative (1)H and (31)P MRI of Cortical Bone in Humans. Curr Osteoporos Rep 14:77-86
Rajapakse, Chamith S; Bashoor-Zadeh, Mahdieh; Li, Cheng et al. (2015) Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility. Radiology 276:526-35
Seifert, Alan C; Li, Cheng; Wehrli, Suzanne L et al. (2015) A Surrogate Measure of Cortical Bone Matrix Density by Long T2 -Suppressed MRI. J Bone Miner Res 30:2229-38
Seifert, Alan C; Wehrli, Suzanne L; Wehrli, Felix W (2015) Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths. NMR Biomed 28:861-72
Rajapakse, Chamith S; Bashoor-Zadeh, Mahdieh; Li, Cheng et al. (2015) Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility. Radiology :141850
Wurnig, Moritz C; Calcagni, Maurizio; Kenkel, David et al. (2014) Characterization of trabecular bone density with ultra-short echo-time MRI at 1.5, 3.0 and 7.0?T--comparison with micro-computed tomography. NMR Biomed 27:1159-66

Showing the most recent 10 out of 23 publications