The overall aim of this proposal is to fill the gap of knowledge on how intra-cellular signaling pathways convert environmental cues into chromatin modifications to regulate gene expression during muscle differentiation. The elucidation of the molecular basis by which the information transmitted by signaling cascades is deciphered by chromatin-binding proteins and broadcasted to other components of the transcription machinery will reveal new targets for selective pharmacological interventions aimed at modulating gene expression to influence muscle growth and regeneration in normal and pathological conditions.
In specific aim 1, we will investigate how the chromatin remodeling SWI-SNF complex discriminates between the information transmitted by the differentiation-activated p38 signaling vs stress- or inflammation- activated p38 and JNK cascades. We will test the hypothesis that distinct phosphorylation patterns of the structural sub-units of the SWI/SNF complex - the BAFproteins - bydifferentiation- vs stress/inflammation- activated pathways establish the code that regulates SWI/SNF recruitment to the chromatin of muscle genes.
In specific aim 2, we will elucidate the molecular basis of acetyltransferase recruitment to the chromatin of muscle-gene regulatory elements in response to the pro-myogenic signaling elicited by IGF-1. We will test the hypothesis that AKT-mediated phosphorylation of specific residues located within the C/H3 region of the acetyltransferase p300, promotes the interaction with the muscle regulatory factor MyoD.
In specific aim 3, we will investigate whether the recruitment of SWI/SNF to the promoters of proliferation genes, which are silenced during differentiation, is also directed by the p38 pathway. We will also study the mechanism by which the cytostatic activity of differentiation-activated p38 converts the IGF1-activated pathway from a mitogenic to a pro-myogenic signaling. We will take advantage from information and reagents generated in specific aims 1 and 2 to study the functional interdependence between the p38 pathway and the PiSK/AKT signaling at the chromatin level. This study will improve our knowledge on the molecular mechanism by which sjgnal transduction pathways regulate gene expression during muscle formation, growth and regeneration. The results gathered from this proposal will have an impact on regenerative medicine, as they will eventually reveal new targets for pharmacological strategies to selectively modulate gene expression in the therapy of neuromuscular disorders and other pathological conditions accompanied by muscle loss, such as cancer-associated cachexia and aging-associated sarcopenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR052779-03
Application #
7405464
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Boyce, Amanda T
Project Start
2006-04-20
Project End
2011-01-31
Budget Start
2008-02-01
Budget End
2009-01-31
Support Year
3
Fiscal Year
2008
Total Cost
$359,869
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Madaro, Luca; Passafaro, Magda; Sala, David et al. (2018) Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 20:917-927
Sartorelli, Vittorio; Puri, Pier Lorenzo (2018) Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 71:375-388
Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco et al. (2018) HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 8:3448
Cunningham, Thomas J; Yu, Michael S; McKeithan, Wesley L et al. (2017) Id genes are essential for early heart formation. Genes Dev 31:1325-1338
Cui, Huanhuan; Bansal, Vikas; Grunert, Marcel et al. (2017) Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS One 12:e0179464
Roberts, Thomas C; Etxaniz, Usue; Dall'Agnese, Alessandra et al. (2017) BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Sci Rep 7:6153
Latella, Lucia; Dall'Agnese, Alessandra; Boscolo, Francesca Sesillo et al. (2017) DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes Dev 31:648-659
Consalvi, Silvia; Brancaccio, Arianna; Dall'Agnese, Alessandra et al. (2017) Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38? activation. Nat Commun 8:13956
Fiacco, E; Castagnetti, F; Bianconi, V et al. (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23:1839-1849
Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca et al. (2016) TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. Elife 5:

Showing the most recent 10 out of 39 publications