Inflammatory bowel disease (IBD), consisting of ulcerative colitis (UC) and Crohn's disease (CD), is a source of extensive morbidity and risk for progression to colon cancer in the US population, with more than one million Americans affected. The semi-essential amino acid L-arginine (L-Arg) has been touted as a supplement with many potential benefits including enhancement of immunity. In response to RFA AT-07-004 we will conduct mechanistic studies in mouse models to address the potential value of L-Arg as a supplement in IBD and determine if it can reduce risk for colitis-associated cancer. During conditions of immune activation, the two major routes for L-Arg utilization are the inducible nitric oxide (NO) synthase (iNOS) and arginase pathways. Arginase generates L-ornithine, the substrate for the enzyme ornithine decarboxylase (ODC) that produces polyamines, which have been shown to enhance wound repair and have been implicated as regulatory factors in immune responses. Our data in two murine models of colitis indicate that supplementation of mice with L-Arg or deletion of iNOS improves colitis, while inhibition of arginase or ODC exacerbates disease. L-Arg uptake into cells is primarily dependent on the cationic amino acid transporter (CAT) proteins, particularly CAT2, which is the predominant transporter in macrophages and CAT1, which is ubiquitously expressed. We will show preliminary data that L-Arg availability is important in cellular functions such as global protein translation, wound repair, and responses to inflammatory stimuli. We will also show that CAT2 expression is upregulated in colitis tissues and colitis-associated tumors, and that mice deficient in CAT2 appear to have exacerbation of colitis. Our hypothesis is that L-Arg availability is an important regulator of mucosal inflammation in IBD such that the amount of L-Arg in the extracellular environment, the transport of L- Arg from outside to inside cells, and the balance of competing metabolic pathways for the utilization of L-Arg are all important in immunomodulation.
Our specific aims are to determine the biological effects of L-Arg supplementation and the role of its uptake and metabolism in models in which we will study: 1.) In vitro: A.) epithelial integrity;and B.) macrophage function;2.) In vivo colitis: A.) clinical parameters;B.) tissue iNOS and polyamine levels, and serum NO and L-Arg levels;C.) biological effects on colonic epithelial cells and macrophages, D.) responses in colonic lymphocytes;3.) In vivo colitis-associated cancer: A.) clinical parameters;and B.) tumor CAT1, CAT2, iNOS, cytokine, and polyamine levels, and serum NO and L-Arg levels. In these studies, we seek to establish new insights into the role of L-Arg in mucosal immunology and to provide evidence for the potential beneficial effects of L-Arg supplementation in both IBD and IBD-associated cancer while establishing the importance of L-Arg uptake in this process. This work is expected to provide the groundwork for translational studies in patients that could lead to new adjunctive therapies that would be safe, effective, and low in cost and improve the long-term outcome in IBD. PUBLIC HEALTH REVELANCE: Inflammatory bowel disease (IBD) affects more than one million Americans and results in a substantial amount of suffering and the risk for developing cancer of the colon. In this project we will test the hypothesis that supplementation of the amino acid L-arginine (L-Arg) is beneficial in these diseases and that L-Arg uptake into cells has an essential role in the modulation of intestinal inflammation. We will use in vitro and in vivo models of colitis and colitis-associated cancer to conduct mechanistic studies that are designed to generate new insights into the immunobiology of IBD and lay the groundwork for new approaches to attenuate inflammation and associated carcinogenesis.

National Institute of Health (NIH)
National Center for Complementary & Alternative Medicine (NCCAM)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZAT1-SM (10))
Program Officer
Pontzer, Carol H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Means, Anna L; Freeman, Tanner J; Zhu, Jing et al. (2018) Epithelial Smad4 Deletion Up-Regulates Inflammation and Promotes Inflammation-Associated Cancer. Cell Mol Gastroenterol Hepatol 6:257-276
Blosse, Alice; Lehours, Philippe; Wilson, Keith T et al. (2018) Helicobacter: Inflammation, immunology, and vaccines. Helicobacter 23 Suppl 1:e12517
Coburn, Lori A; Singh, Kshipra; Asim, Mohammad et al. (2018) Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis. Oncogene :
Shen, Xi; Liu, Liping; Peek, Richard M et al. (2018) Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes. Mucosal Immunol 11:1316-1328
Mera, Robertino M; Bravo, Luis E; Camargo, M Constanza et al. (2018) Dynamics of Helicobacter pylori infection as a determinant of progression of gastric precancerous lesions: 16-year follow-up of an eradication trial. Gut 67:1239-1246
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Gobert, Alain P; Al-Greene, Nicole T; Singh, Kshipra et al. (2018) Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Front Immunol 9:1242
Choksi, Yash A; Reddy, Vishruth K; Singh, Kshipra et al. (2018) BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunol 11:1363-1374
Scoville, Elizabeth A; Allaman, Margaret M; Brown, Caroline T et al. (2018) Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn's Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 14:
Sierra, Johanna C; Asim, Mohammad; Verriere, Thomas G et al. (2018) Epidermal growth factor receptor inhibition downregulates Helicobacter pylori-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut 67:1247-1260

Showing the most recent 10 out of 97 publications