Photodynamic therapy (PDT) is a promising new cancer intervention that is based on the photoactivation of a systemically administered photosensitizing dye. Absorption of visible light by the dye results in the photosensitized formation of singlet oxygen (1O2) and subsequent cytotoxic reactions of 1O2 with cellular substrate. Considerable effort has been devoted to elucidate the mechanisms by which these photosensitized oxidations contribute to tumor destruction. These studies proposed here are designed to continue and extend our efforts, begun 10 years ago, to elucidate the biochemical basis for PDT-induced cytotoxicity and to use the new knowledge acquired in this effort to enhance the efficacy of the therapy. The proposed studies are interdisciplinary in nature, applying the expertise of scientists in biochemistry, biophysics, radiology and physics. Important new questions have arisen during the course of the previous grant period. Modifications in the photoradiation regimen have been shown to be capable of producing significant differences in inhibition of tumor growth. The mechanisms underlying these effects remain to be determined and experiments designed to accomplish this form an important focus for the proposed renewal. Different xenografts grown in the same host (nude mouse) possess significantly different sensitivities to PDT/ This finding has raised important questions concerning mechanism of action, sensitizer uptake and distribution, intrinsic differences between tumor cell types, etc. These studies will be pursued as will closely related problems in primary and transplanted rat mammary tumor models.
Five specific aims have been formulated: (1) to optimize the drug and irradiation regimen in PDT of the R3230AC tumor in vivo and to quantitate an optimum therapeutic ratio in that system; (2) to determine sensitivities of primary and transplantable NMU tumors in the same host and to determine mechanisms differences in sensitivity between the R3230AC and the human mesothelioma xenograft in the nude mouse; (4) to perform several direct experimental tests in vitro and in vivo of the mechanisms whereby fractionated and reduced dose rate irradiation enhance the therapeutic response; and (5) to investigate the problem of recurrent tumors in PDT. In all of these studies, biochemical methods will be used in close conjunction with NMR imaging and spectroscopy, fluorescent probes, FACS, and radioactive labeling techniques.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA036856-11
Application #
2089179
Study Section
Radiation Study Section (RAD)
Project Start
1992-07-10
Project End
1997-02-28
Budget Start
1994-05-13
Budget End
1995-02-28
Support Year
11
Fiscal Year
1994
Total Cost
Indirect Cost
Name
University of Rochester
Department
Biochemistry
Type
Schools of Dentistry
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
You, Youngjae; Gibson, Scott L; Hilf, Russell et al. (2003) Water soluble, core-modified porphyrins. 3. Synthesis, photophysical properties, and in vitro studies of photosensitization, uptake, and localization with carboxylic acid-substituted derivatives. J Med Chem 46:3734-47
Brennan, Nancy K; Hall, Jonathan P; Davies, Sherry R et al. (2002) In vitro photodynamic properties of chalcogenopyrylium analogues of the thiopyrylium antitumor agent AA1. J Med Chem 45:5123-35
Gibson, S L; Havens, J J; Metz, L et al. (2001) Is delta-aminolevulinic acid dehydratase rate limiting in heme biosynthesis following exposure of cells to delta-aminolevulinic acid? Photochem Photobiol 73:312-7
Bigelow, C E; Mitra, S; Knuechel, R et al. (2001) ALA- and ALA-hexylester-induced protoporphyrin IX fluorescence and distribution in multicell tumour spheroids. Br J Cancer 85:727-34
Finlay, J C; Conover, D L; Hull, E L et al. (2001) Porphyrin bleaching and PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal rat skin in vivo. Photochem Photobiol 73:54-63
Stilts, C E; Nelen, M I; Hilmey, D G et al. (2000) Water-soluble, core-modified porphyrins as novel, longer-wavelength-absorbing sensitizers for photodynamic therapy. J Med Chem 43:2403-10
Mitra, S; Foster, T H (2000) Photochemical oxygen consumption sensitized by a porphyrin phosphorescent probe in two model systems. Biophys J 78:2597-605
Gibson, S L; Nguyen, M L; Havens, J J et al. (1999) Relationship of delta-aminolevulinic acid-induced protoporphyrin IX levels to mitochondrial content in neoplastic cells in vitro. Biochem Biophys Res Commun 265:315-21
Georgakoudi, I; Keng, P C; Foster, T H (1999) Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells. Br J Cancer 79:1372-7
Leonard, K A; Nelen, M I; Simard, T P et al. (1999) Synthesis and evaluation of chalcogenopyrylium dyes as potential sensitizers for the photodynamic therapy of cancer. J Med Chem 42:3953-64

Showing the most recent 10 out of 50 publications