Philips, Katherine B; Kurtoglu, Metin; Leung, Howard J et al. (2014) Increased sensitivity to glucose starvation correlates with downregulation of glycogen phosphorylase isoform PYGB in tumor cell lines resistant to 2-deoxy-D-glucose. Cancer Chemother Pharmacol 73:349-61
|
Xi, Haibin; Kurtoglu, Metin; Lampidis, Theodore J (2014) The wonders of 2-deoxy-D-glucose. IUBMB Life 66:110-21
|
Sullivan, Elizabeth J; Kurtoglu, Metin; Brenneman, Randall et al. (2014) Targeting cisplatin-resistant human tumor cells with metabolic inhibitors. Cancer Chemother Pharmacol 73:417-27
|
Xi, Haibin; Barredo, Julio C; Merchan, Jaime R et al. (2013) Endoplasmic reticulum stress induced by 2-deoxyglucose but not glucose starvation activates AMPK through CaMKK? leading to autophagy. Biochem Pharmacol 85:1463-77
|
Liu, Huaping; Kurtoglu, Metin; Cao, Yenong et al. (2013) Conversion of 2-deoxyglucose-induced growth inhibition to cell death in normoxic tumor cells. Cancer Chemother Pharmacol 72:251-62
|
Leung, Howard J; Duran, Elda M; Kurtoglu, Metin et al. (2012) Activation of the unfolded protein response by 2-deoxy-D-glucose inhibits Kaposi's sarcoma-associated herpesvirus replication and gene expression. Antimicrob Agents Chemother 56:5794-803
|
Pina, Y; Decatur, C; Murray, Tg et al. (2011) Advanced retinoblastoma treatment: targeting hypoxia by inhibition of the mammalian target of rapamycin (mTOR) in LH(BETA)T(AG) retinal tumors. Clin Ophthalmol 5:337-43
|
Xi, Haibin; Kurtoglu, Metin; Liu, Huaping et al. (2011) 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 67:899-910
|
Houston, Samuel K; Pina, Yolanda; Murray, Timothy G et al. (2011) Novel retinoblastoma treatment avoids chemotherapy: the effect of optimally timed combination therapy with angiogenic and glycolytic inhibitors on LH(BETA)T(AG) retinoblastoma tumors. Clin Ophthalmol 5:129-37
|
Kurtoglu, Metin; Philips, Katherine; Liu, Huaping et al. (2010) High endoplasmic reticulum activity renders multiple myeloma cells hypersensitive to mitochondrial inhibitors. Cancer Chemother Pharmacol 66:129-40
|
Showing the most recent 10 out of 39 publications