Investigations designed to address the completion of the total synthesis of the antitumor antibiotic CC-1065, the continuation and completion of structure-activity studies on CC-1065, and the initiation of efforts of the design, synthesis and evaluation of synthetic topological agents structurally related to CC-1065 as potential high-affinity, sequence-selectively, B-DNA binding agents are detailed. The initiation of efforts on the total sythesis of bleomycins (glycopeptide antitumor-antibiotics), and the initiation of structure activity studies employing synthetic bleomyins, are detailed.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA041986-05
Application #
3182626
Study Section
Bio-Organic and Natural Products Chemistry Study Section (BNP)
Project Start
1985-07-01
Project End
1991-12-31
Budget Start
1989-01-01
Budget End
1989-12-31
Support Year
5
Fiscal Year
1989
Total Cost
Indirect Cost
Name
Purdue University
Department
Type
Schools of Arts and Sciences
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Wolfe, Amanda L; Duncan, Katharine K; Lajiness, James P et al. (2013) A fundamental relationship between hydrophobic properties and biological activity for the duocarmycin class of DNA-alkylating antitumor drugs: hydrophobic-binding-driven bonding. J Med Chem 56:6845-57
Wolfe, Amanda L; Duncan, Katharine K; Parelkar, Nikhil K et al. (2013) Efficacious cyclic N-acyl O-amino phenol duocarmycin prodrugs. J Med Chem 56:4104-15
Wolfe, Amanda L; Duncan, Katharine K; Parelkar, Nikhil K et al. (2012) A novel, unusually efficacious duocarmycin carbamate prodrug that releases no residual byproduct. J Med Chem 55:5878-86
Lajiness, James P; Boger, Dale L (2011) Asymmetric synthesis of 1,2,9,9a-tetrahydrocyclopropa[c]benzo[e]indol-4-one (CBI). J Org Chem 76:583-7
Lajiness, James P; Boger, Dale L (2010) Synthesis and characterization of a cyclobutane duocarmycin derivative incorporating the 1,2,10,11-tetrahydro-9H-cyclobuta[c]benzo[e]indol-4-one (CbBI) alkylation subunit. J Am Chem Soc 132:13936-40
Boyle, Kristopher E; MacMillan, Karen S; Ellis, David A et al. (2010) Synthesis and evaluation of duocarmycin SA analogs incorporating the methyl 1,2,8,8a-tetrahydrocyclopropa[c]oxazolo[2,3-e]indol-4-one-6-carboxylate (COI) alkylation subunit. Bioorg Med Chem Lett 20:1854-7
Robertson, William M; Kastrinsky, David B; Hwang, Inkyu et al. (2010) Synthesis and evaluation of a series of C5'-substituted duocarmycin SA analogs. Bioorg Med Chem Lett 20:2722-5
Subramanian, Vidya; Williams, Robert M; Boger, Dale L et al. (2010) Methods to characterize the effect of DNA-modifying compounds on nucleosomal DNA. Methods Mol Biol 613:173-92
Lajiness, James P; Robertson, William M; Dunwiddie, Irene et al. (2010) Design, synthesis, and evaluation of duocarmycin O-amino phenol prodrugs subject to tunable reductive activation. J Med Chem 53:7731-8
MacMillan, Karen S; Boger, Dale L (2009) Fundamental relationships between structure, reactivity, and biological activity for the duocarmycins and CC-1065. J Med Chem 52:5771-80

Showing the most recent 10 out of 62 publications