The goal of this renewal proposal is to characterize inhibition of antitumor immune responses by tumor gangliosides in vivo. The general hypothesis underlying this work is that gangliosides are shed by tumor cells, act as intercellular signaling molecules, block the cellular immune response, and protect tumor cells from host immune destruction. Findings of significant shedding and of potent immunosuppressive activity of human neuroblastoma gangliosides, and new preliminary data showing inhibition of murine cellular immune response to syngeneic tumor cells by these molecules, lay the foundation to directly test the hypothesis that tumor gangliosides downregulate host cellular immune responses to syngeneic tumor cell both in vitro and in vivo. Two approaches will be used to obtain neuroblastoma tumor gangliosides, homogeneous in both carbohydrate and ceramide structure, in large quantities: isolation from human neuroblastoma tumors (natural) and chemical synthesis (synthetic). All gangliosides will be further purified by HPLC to remove potential traces of contaminants prior to biological study. Molecular structures of the gangliosides will be confirmed by mass spectrometry and chemical methods. The delineation of inhibitory effects of tumor gangliosides upon both the afferent (priming) and efferent (effector function) phases of the cellular immune response in murine tumor models in vivo will be complemented by determination of the effects of these same gangliosides on the human cellular immune response in vitro. The in vivo studies will be performed in two murine syngeneic tumor models, FBL erythroleukemia and B78H1 melanoma. The proposed studies will conclusively demonstrate downregulation of syngeneic antitumor immune response by neuroblastoma tumor gangliosides in vivo. They will provide the foundation for future investigations (longer term aims) to elucidate the molecular mechanism(s) of inhibition by tumor gangliosides and to develop strategies to eliminate these immunosuppressive molecules (such as removal of gangliosides from the circulation or modulation of ganglioside biosynthesis and shedding by pharmacologic agents), with the ultimate goal of achieving improved therapeutic approaches to neuroblastoma and other neuroectodermal tumors such as melanoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA042361-10
Application #
2683450
Study Section
Physiological Chemistry Study Section (PC)
Program Officer
Finerty, John F
Project Start
1986-05-01
Project End
2001-03-31
Budget Start
1998-04-01
Budget End
1999-03-31
Support Year
10
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Children's Research Institute
Department
Type
DUNS #
City
Washington
State
DC
Country
United States
Zip Code
20010
Wondimu, Assefa; Liu, Yihui; Su, Yan et al. (2014) Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 74:5449-57
Jales, Alessandra; Falahati, Rustom; Mari, Elisabeth et al. (2011) Ganglioside-exposed dendritic cells inhibit T-cell effector function by promoting regulatory cell activity. Immunology 132:134-43
Liu, Y; Yan, S; Wondimu, A et al. (2010) Ganglioside synthase knockout in oncogene-transformed fibroblasts depletes gangliosides and impairs tumor growth. Oncogene 29:3297-306
Shen, Weiping; Stone, Kelly; Jales, Alessandra et al. (2008) Inhibition of TLR activation and up-regulation of IL-1R-associated kinase-M expression by exogenous gangliosides. J Immunol 180:4425-32
Shen, Weiping; Falahati, Rustom; Stark, Ryan et al. (2005) Modulation of CD4 Th cell differentiation by ganglioside GD1a in vitro. J Immunol 175:4927-34
Hainz, Ursula; Obexer, Petra; Winkler, Christiana et al. (2005) Monocyte-mediated T-cell suppression and augmented monocyte tryptophan catabolism after human hematopoietic stem-cell transplantation. Blood 105:4127-34
Hettmer, Simone; Ladisch, Stephan; Kaucic, Karen (2005) Low complex ganglioside expression characterizes human neuroblastoma cell lines. Cancer Lett 225:141-9
Hettmer, S; McCarter, R; Ladisch, S et al. (2004) Alterations in neuroblastoma ganglioside synthesis by induction of GD1b synthase by retinoic acid. Br J Cancer 91:389-97
Hettmer, Simone; Malott, Carolin; Woods, William et al. (2003) Biological stratification of human neuroblastoma by complex ""B"" pathway ganglioside expression. Cancer Res 63:7270-6
Caldwell, Sheila; Heitger, Andreas; Shen, Weiping et al. (2003) Mechanisms of ganglioside inhibition of APC function. J Immunol 171:1676-83

Showing the most recent 10 out of 39 publications