In spite of nearly 40 years research on fibronectin (FN), there are two important structural questions about the FN matrix that are unanswered. The first is, what are the bonds that connect FN molecules to make the matrix fibrils? Our first aim is to develop a new approach to identify these FN-FN bonds. We propose to make FN dimers in which 4-6 highly specific 3C and/or TEV protease sites are inserted between certain domains. These FNs will be used to assemble an FN matrix in cell culture. The matrix will be crosslinked to stabilize binding partners, then cleaved with protease. The FN will be released as small fragments, crosslinked to their bonded partners. These will be identified by binding specificity and antibodies. The precise binding sites will be determined by mass spec. The second question is elasticity. An intriguing mechanical feature of FN fibrils is that they can be stretche 4-fold, making them perhaps the most elastic protein polymer known. The mechanism of the elasticity is controversial. One group concludes that stretching involves unfolding and extending FNIII domains. We believe the stretching involves a conformational change of the FN dimers from compact to elongated, without domain unfolding. We propose two approaches to settle the controversy. (1) We have designed FRET constructs using GFP acceptor and chemical fluorophore donors attached to engineered cys in the domain to be tested. The FRET will report the extent of domain unfolding. (2) We will develop shrec, a super-resolution, single-molecule light microscopy technique, to determine the separation of red and green fluorophores in the first FNIII domains in the dimer. Shrec should have a resolution of ~10 nm, and will tell us whether the FN dimers are in the compact conformation (~20 nm apart), extended conformation (~100 nm), or have unraveled FNIII domains (>100 nm). A third project will investigate a rare kidney disease caused by mutations in FN. We believe that the pathology may be caused by a failure to fold into the compact conformation. We propose to test this by examining the FN dimers using established hydrodynamic techniques. We will also apply the shrec technology discussed above to compare the conformations of wild type and mutant FN at the single molecule level.

Public Health Relevance

Fibronectin is the earliest extracellular matrix formed in embryonic tissues and healing wounds. Fibronectin molecules assemble into matrix fibrils, but almost nothing is known about their structure. We propose to determine the molecular structure of protein-protein bonds in matrix fibrils, and the mechanism of fibril elasticity. We will also tet a structural hypothesis for a kidney disease caused by mutations in fibronectin.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA047056-34
Application #
8634028
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Ault, Grace S
Project Start
1979-05-01
Project End
2017-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
34
Fiscal Year
2014
Total Cost
$302,081
Indirect Cost
$107,091
Name
Duke University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Ohashi, Tomoo; Lemmon, Christopher A; Erickson, Harold P (2017) Fibronectin Conformation and Assembly: Analysis of Fibronectin Deletion Mutants and Fibronectin Glomerulopathy (GFND) Mutants. Biochemistry 56:4584-4591
Shah, Riddhi; Ohashi, Tomoo; Erickson, Harold P et al. (2017) Spontaneous Unfolding-Refolding of Fibronectin Type III Domains Assayed by Thiol Exchange: THERMODYNAMIC STABILITY CORRELATES WITH RATES OF UNFOLDING RATHER THAN FOLDING. J Biol Chem 292:955-966
Erickson, Harold P (2017) Protein unfolding under isometric tension-what force can integrins generate, and can it unfold FNIII domains? Curr Opin Struct Biol 42:98-105
Albrecht, Elke; Norheim, Frode; Thiede, Bernd et al. (2015) Irisin - a myth rather than an exercise-inducible myokine. Sci Rep 5:8889
Spahich, Nicole A; Kenjale, Roma; McCann, Jessica et al. (2014) Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin. Microbiology 160:1182-90
Giacomodonato, Mónica N; Noto Llana, Mariángeles; Aya Castañeda, María Del Rosario et al. (2014) AvrA effector protein of Salmonella enterica serovar Enteritidis is expressed and translocated in mesenteric lymph nodes at late stages of infection in mice. Microbiology 160:1191-9
Ohashi, Tomoo (2014) A fibronectin-derived cell survival peptide belongs to a new class of epiviosamines. J Invest Dermatol 134:882-884
Erickson, Harold P (2013) Irisin and FNDC5 in retrospect: An exercise hormone or a transmembrane receptor? Adipocyte 2:289-93
Fouda, Genevieve G; Jaeger, Frederick H; Amos, Joshua D et al. (2013) Tenascin-C is an innate broad-spectrum, HIV-1-neutralizing protein in breast milk. Proc Natl Acad Sci U S A 110:18220-5
Schumacher, Maria A; Chinnam, Nagababu; Ohashi, Tomoo et al. (2013) The structure of irisin reveals a novel intersubunit ?-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J Biol Chem 288:33738-44

Showing the most recent 10 out of 59 publications