B-lineage acute lymphoblastic leukemia (ALL) is the most common form of cancer in children. The leukemic lymphoblasts are clonal expansions of B-cell progenitors that grow within the hematopoietic microenvironment. Such cells and their normal counterparts rapidly die by apoptosis in vitro unless they are supported by stromal layers. Under previous funding, culture techniques suitable for maintaining immature B cells and other hematopoietic cells were developed, and molecules involved in the interaction between immature B cells and stroma identified. Stroma-supported cultures of leukemic B-cell precursors have made it possible to measure the growth potential of such cells, their propensity to undergo apoptosis and their sensitivity to anticancer drugs. Our long-term objective is to define the precise microenvironmental requirements for survival, growth and differentiation of normal and leukemic B-cell progenitors and to apply this information to the development of novel strategies of ALL treatment. Cellular components of the microenvironment may have different capacities for supporting the survival and expansion of immature lymphoid cells.
In Specific Aim 1, immortal clonal stromal cell lines will be developed from different sites of lymphohematopoiesis (human bone marrow and murine aorta-gonad mesonephros region). The cell lines' ability to support immature B cells and other hematopoietic cells in vitro will then be characterized, and their lineage-association determined.
Specific Aim 2 will address the mechanisms by which stromal cells support immature lymphoid cell survival. These studies will build on recent reports and preliminary findings to determine the importance of direct communication between lymphoid and stromal cells and the role of gap junctions in this interaction. Gene profiling studies will be used to determine whether expression of growth factors, adhesion molecules and other potentially important molecules is associated with the ability of stromal cell lines to support lymphoid cells. Studies in Specific Aim 3 will use stroma-supported cultures of primary leukemic cells to conduct preclinical testing of BAY 36-1677, a genetically engineered variant of IL-4 that has unique receptor-reactivity and signaling properties. In preliminary studies, BAY 36-1677 showed powerful and selective cytotoxicity against ALL cells but did not suppress the growth of normal hematopoietic cells and did not affect fibroblasts or endothelial cells. The proposed studies will further characterize the antileukemic activity of BAY 36-1677 and identify synergistically interacting compounds.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA058297-10
Application #
6512753
Study Section
Pathology B Study Section (PTHB)
Program Officer
Mccarthy, Susan A
Project Start
1993-02-01
Project End
2005-06-30
Budget Start
2002-07-01
Budget End
2003-06-30
Support Year
10
Fiscal Year
2002
Total Cost
$249,000
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Iwamoto, Shotaro; Mihara, Keichiro; Downing, James R et al. (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117:1049-57
Imai, Chihaya; Iwamoto, Shotaro; Campana, Dario (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376-83
Imai, C; Campana, D (2004) Genetic modification of T cells for cancer therapy. J Biol Regul Homeost Agents 18:62-71
Imai, C; Mihara, K; Andreansky, M et al. (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18:676-84
Mihara, Keichiro; Imai, Chihaya; Coustan-Smith, Elaine et al. (2003) Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 120:846-9
Pui, Ching-Hon; Relling, Mary V; Campana, Dario et al. (2002) Childhood acute lymphoblastic leukemia. Rev Clin Exp Hematol 6:161-80; discussion 200-2
Pui, Ching Hon; Relling, Mary V; Evans, William E (2002) Role of pharmacogenomics and pharmacodynamics in the treatment of acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 15:741-56
Suzuki, T; Coustan-Smith, E; Mihara, K et al. (2002) Signals mediated by FcgammaRIIA suppress the growth of B-lineage acute lymphoblastic leukemia cells. Leukemia 16:1276-84
Ito, C; Tecchio, C; Coustan-Smith, E et al. (2002) The antifungal antibiotic clotrimazole alters calcium homeostasis of leukemic lymphoblasts and induces apoptosis. Leukemia 16:1344-52
Srivannaboon, K; Shanafelt, A B; Todisco, E et al. (2001) Interleukin-4 variant (BAY 36-1677) selectively induces apoptosis in acute lymphoblastic leukemia cells. Blood 97:752-8

Showing the most recent 10 out of 36 publications