The long-range goal of our research is to understand the biological function of the retinoblastoma tumor suppressor protein (RB). During the current funding period, we have obtained results to support the idea that RB functions as an inhibitor of cell proliferation and cell death. This dual role of RB allows for terminal differentiation that is coupled to long-term survival, e.g., of muscles and neurons. Inactivation of RB by genetic mutation, by viral oncoproteins, or by phosphorylation, is associated with tumor development. The inactivation of RB, we reason, must be complemented by defects in apoptosis to cause tumor development. The proposed research is designed to identify genetic programs that are regulated by RB to establish terminal growth arrest and the resistance to apoptosis. We are interested in the hypothesis that RB may regulate a single """"""""transcriptome"""""""" to block mitogenic and apoptotic stimulation of differentiated cells. The proposed research is based on two interesting RB mutants we have created. The point- mutant N757F can inhibit S-phase entry, but cannot establish mitogen- resistant growth arrest during muscle differentiation. The point-mutant MI is resistant to proteolytic degradation during apoptosis and can protect cells from tumor necrosis factor (TNF)-induced death. We have created a germline MI mutation in the mouse Rb gene and found these Rb-MI mice to be resistant to septic shock. We propose to create a Rb- N757F mice as a model to further study the function of RB in terminal differentiation. We will use proteomics methods to identify the protein- binding defects of RB-N757F. We will use genomics methods to identify genes that are differentially expressed in myocytes that express RB or RB-N757F. We will also identify genes that are differentially expressed in RB versus RB-MI cells under conditions of TNF stimulation. By comparing these two independently derived gene sets, we will be able to determine if RB regulates a common transcriptome to render cells resistant to mitogenic and apoptotic signals. Identification of RB-regulated genetic programs is fundamental to the understanding of RB function in differentiation and apoptosis. These genetics programs are likely to be affected during tumor development. Therefore, the proposed research will result in the identification of important targets for therapeutic intervention in cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA058320-13
Application #
6709394
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Spalholz, Barbara A
Project Start
1994-05-03
Project End
2007-02-28
Budget Start
2004-03-01
Budget End
2005-02-28
Support Year
13
Fiscal Year
2004
Total Cost
$333,906
Indirect Cost
Name
University of California San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Ludwig, Kirsten; Tse, Edison S; Wang, Jean Yj (2013) Colon cancer cells adopt an invasive phenotype without mesenchymal transition in 3-D but not 2-D culture upon combined stimulation with EGF and crypt growth factors. BMC Cancer 13:221
Han, Jinbo; Soletti, Rossana C; Sadarangani, Anil et al. (2013) Nuclear expression of *-catenin promotes RB stability and resistance to TNF-induced apoptosis in colon cancer cells. Mol Cancer Res 11:207-18
Han, Jinbo; Sridevi, Priya; Ramirez, Michael et al. (2013) ýý-Catenin-dependent lysosomal targeting of internalized tumor necrosis factor-ýý suppresses caspase-8 activation in apoptosis-resistant colon cancer cells. Mol Biol Cell 24:465-73
Spehlmann, Martina E; Manthey, Carolin F; Dann, Sara M et al. (2013) Trp53 deficiency protects against acute intestinal inflammation. J Immunol 191:837-47
Bourgo, Ryan J; Thangavel, Chellappagounder; Ertel, Adam et al. (2011) RB restricts DNA damage-initiated tumorigenesis through an LXCXE-dependent mechanism of transcriptional control. Mol Cell 43:663-72
Zeitlin, Samantha G; Chapados, Brian R; Baker, Norman M et al. (2011) Uracil DNA N-glycosylase promotes assembly of human centromere protein A. PLoS One 6:e17151
Knudsen, Erik S; Wang, Jean Y J (2010) Targeting the RB-pathway in cancer therapy. Clin Cancer Res 16:1094-9
Francis, Sarah M; Bergsied, Jacqueline; Isaac, Christian E et al. (2009) A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development. Mol Cell Biol 29:4455-66
Huang, XiaoDong; Masselli, Anja; Frisch, Steven M et al. (2007) Blockade of tumor necrosis factor-induced Bid cleavage by caspase-resistant Rb. J Biol Chem 282:29401-13
Borges, H L; Hunton, I C; Wang, J Y J (2007) Reduction of apoptosis in Rb-deficient embryos via Abl knockout. Oncogene 26:3868-77

Showing the most recent 10 out of 35 publications