Conjugated linoleic acid (abbreviated to CLA) represents a family of 18-carbon fatty acid isomers with two conjugated double bonds. CLA exerts a powerful anticancer activity in the rat mammary gland. Our current working model is built on the concept that CLA is able to affect different cell populations of the mammary tissue. In addition to suppressing neoplastic progression of the epithelial cells, CLA also targets the mammary stromal cells in blocking their differentiation to endothelial cells. The latter outcome results in reduced angiogenesis, thereby contributing to cancer protection by CLA. There is an increasing awareness that one CLA isomer may produce specific biological effects not shared by the other. The paucity of information on the anticancer effect of 9,11-CLA versus 10,12-CLA provides the justification for comparing the cellular and molecular responses to these two isomers in both mammary epithelial and mammary stromal populations.
Aim 1 is to study the anticancer and biomarker modulatory effects 9,11-CLA and 10,12- CLA in the rat mammary gland. Specifically proliferation and apoptosis biomarkers will be evaluated in premalignant lesions before they progress to carcinomas. The knowledge on biomarkers will be very valuable because these targets could be used as surrogate endpoints to assess the efficacy of CLA in future intervention trials. There are limitations in using the whole mammary gland as an organ to do molecular analysis. We have therefore included a mammary cell culture model to elucidate the cellular effects of CLA, such as cell cycle perturbation, clonogenic growth inhibition and induction of apoptosis, as well as the molecular basis responsible for these cellular events. Fatty acids are ligands for a class of transcription factors called peroxisome proliferator-activated receptors (PPAR), and both 9,11-CLA and 10,12-CLA have been demonstrated to be high-affinity ligands and activators of PPAR.
Aim 2 is to investigate the role of different PPAR subtypes as signaling pathways for CLA responses in blocking proliferation and inducing apoptosis in an in vitro rat mammary tumor cell model. Experiments will be designed to address the ability of 9,11-CLA and 10,12-CLA in modulating the expression, nuclear translocation, DNA-binding and transcriptional activity of individual PPAR subtype, and whether PPAR activation contributes to the anticancer effect of CLA. Lastly, Aim 3 is to determine the functional consequence of CLA alteration of the mammary stroma on the angiogenic switch during rat mammary carcinogenesis and on the hematogenous and lymphogenous spread of transplantable metastatic rat mammary tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA061763-11
Application #
6805659
Study Section
Metabolic Pathology Study Section (MEP)
Program Officer
Davis, Cindy D
Project Start
1994-02-01
Project End
2008-08-31
Budget Start
2004-09-01
Budget End
2005-08-31
Support Year
11
Fiscal Year
2004
Total Cost
$338,876
Indirect Cost
Name
Roswell Park Cancer Institute Corp
Department
Type
DUNS #
824771034
City
Buffalo
State
NY
Country
United States
Zip Code
14263
Hsu, Yung-Chung; Ip, Margot M (2011) Conjugated linoleic acid-induced apoptosis in mouse mammary tumor cells is mediated by both G protein coupled receptor-dependent activation of the AMP-activated protein kinase pathway and by oxidative stress. Cell Signal 23:2013-20
Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui et al. (2010) Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells. Cell Signal 22:590-9
Ou, Lihui; Wu, Yue; Ip, Clement et al. (2008) Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response. J Lipid Res 49:985-94
Meng, Xiaojing; Shoemaker, Suzanne F; McGee, Sibel O et al. (2008) t10,c12-Conjugated linoleic acid stimulates mammary tumor progression in Her2/ErbB2 mice through activation of both proliferative and survival pathways. Carcinogenesis 29:1013-21
Ou, Lihui; Ip, Clement; Lisafeld, Barbara et al. (2007) Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss. Biochem Biophys Res Commun 356:1044-9
Ip, Margot M; McGee, Sibel O; Masso-Welch, Patricia A et al. (2007) The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice over-expressing erbB2 in the mammary epithelium. Carcinogenesis 28:1269-76
Russell, Joshua S; McGee, Sibel Oflazoglu; Ip, Margot M et al. (2007) Conjugated linoleic acid induces mast cell recruitment during mouse mammary gland stromal remodeling. J Nutr 137:1200-7
Lock, Adam L; Corl, Benjamin A; Barbano, David M et al. (2004) The anticarcinogenic effect of trans-11 18:1 is dependent on its conversion to cis-9, trans-11 CLA by delta9-desaturase in rats. J Nutr 134:2698-704
Masso-Welch, Patricia A; Zangani, Danilo; Ip, Clement et al. (2004) Isomers of conjugated linoleic acid differ in their effects on angiogenesis and survival of mouse mammary adipose vasculature. J Nutr 134:299-307
Corl, Benjamin A; Barbano, David M; Bauman, Dale E et al. (2003) cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. J Nutr 133:2893-900

Showing the most recent 10 out of 27 publications