Secreted TGF-? family proteins play key roles in cell differentiation, and deregulation of TGF-? family signaling is considered as a mechanism of a variety of diseases, including cancer. Following receptor activation, intracellular signaling effectors, called Smads, relay the signals that lead to activation or repression of TGF-? family target genes. Considerable insight has been gained on how Smads are activated and their function is regulated through phosphorylation, teaching us that functional crosstalk of Smads with kinases dictates the gene expression responses to TGF-? family proteins. Protein methylation has emerged as a post-translational modification that exerts key roles in defining protein functions, at the level of signaling mediators and at the level of epigenetic regulation of transcription. However, there is no knowledge on functional interactions of Smads with methyl transferases. Among a variety of methyl transferases tested, we found specific interactions of three of them with selected Smads. We hypothesize that functional interactions with methyl transferases define Smad signaling, through Smad methylation thus regulating Smad activity, or through alterations of TGF-? -induced transcription responses. We propose three Aims, each focusing on the functional interaction of an individual methyl transferase with Smads. Each methyl transferase targets selectively a defined type of Smads, either the inhibitory Smad6 or Smad7 (Aim 1), the common Smad4 (Aim 2), or the TGF-? - activated R-Smad Smad3 (Aim 3).
In Aim 1 we will define the role of the Arg methyl transferase PRMT1 in Smad6 and Smad7 function. We will characterize the methylation of Smad6 and Smad7 by PRMT1 and evaluate the role of PRMT1 in Smad6 and Smad7 function, and in TGF-? - and BMP- induced, Smad-mediated transcription.
In Aim 2, we will define the role of SMYD3 in TGF-? /Smad signaling. SMYD3 methylates Lys4 of histone H3, which has been linked to enhanced transcription, yet was also shown to target a cell surface receptor. We showed that SMYD3 interacts specifically with Smad4, and propose to evaluate the role of this interaction in Smad4 function, and transcription regulation by the TGF-? -activated Smad3/4 complex at target genes. We will thereby focus on the regulatory gene sequences of hTERT that are targeted by SMYD3 and TGF-? signaling.
In Aim 3 we will define the role of ESET/SETDB1, which methylates Lys9 of histone 3 in TGF-? /Smad regulated gene expression. We have shown that ESET interacts with Smad3, but not the other Smads, and propose to explore the functional crosstalk between TGF-? /Smad3-mediated transcription regulation and ESET, focusing on the expression of SnoN, an oncogene whose expression results in inhibition of TGF-? signaling. These studies will provide paradigms for how methyl transferases regulate Smad signaling and the transcription responses to TGF-? family proteins.

Public Health Relevance

Secreted proteins, that structurally belong to the same family, i.e. the TGF-? family, play key roles in defining the type of cell or tissue that originates during development, and deregulation of the instructions that these proteins provide to the cells is considered as a mechanism of a variety of diseases, including cancers. The instructions provided to the cells by TGF-? family proteins are relayed by a class of proteins, the Smads, that function inside the cells. We found that some members of a group of enzymes, the methyl transferases, interact with Smads, raising the possibility that the functions of Smads are regulated by another type of modification, i.e. adding methyl groups. This research program is aimed at understanding how methyl transferases regulate Smad functions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA063101-15A1
Application #
7790463
Study Section
Intercellular Interactions (ICI)
Program Officer
Salnikow, Konstantin
Project Start
1995-01-01
Project End
2015-01-31
Budget Start
2010-02-09
Budget End
2011-01-31
Support Year
15
Fiscal Year
2010
Total Cost
$505,640
Indirect Cost
Name
University of California San Francisco
Department
Anatomy/Cell Biology
Type
Schools of Dentistry
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Du, Dan; Katsuno, Yoko; Meyer, Dominique et al. (2018) Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelial-mesenchymal transition. EMBO Rep 19:135-155
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Budi, Erine H; Xu, Jian; Derynck, Rik (2016) Regulation of TGF-? Receptors. Methods Mol Biol 1344:1-33
Muthusamy, Baby Periyanayaki; Budi, Erine H; Katsuno, Yoko et al. (2015) ShcA Protects against Epithelial-Mesenchymal Transition through Compartmentalized Inhibition of TGF-?-Induced Smad Activation. PLoS Biol 13:e1002325
Xu, Pinglong; Bailey-Bucktrout, Samantha; Xi, Ying et al. (2014) Innate antiviral host defense attenuates TGF-? function through IRF3-mediated suppression of Smad signaling. Mol Cell 56:723-37
Sakaki-Yumoto, Masayo; Katsuno, Yoko; Derynck, Rik (2013) TGF-? family signaling in stem cells. Biochim Biophys Acta 1830:2280-96
Katsuno, Yoko; Lamouille, Samy; Derynck, Rik (2013) TGF-ýý signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25:76-84
Xu, Jian; Wang, A Hongjun; Oses-Prieto, Juan et al. (2013) Arginine Methylation Initiates BMP-Induced Smad Signaling. Mol Cell 51:5-19
Xu, Pinglong; Liu, Jianming; Derynck, Rik (2012) Post-translational regulation of TGF-* receptor and Smad signaling. FEBS Lett 586:1871-84
Xu, Pinglong; Liu, Jianming; Sakaki-Yumoto, Masayo et al. (2012) TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 5:ra34

Showing the most recent 10 out of 43 publications