HTLV-1 is the etiological agent of adult T-cell leukemia lymphoma (ATLL). ATLL cells are characterized by constitutive NF?B activation, a key feature of other lymphomas, myeloma, and solid tumors. The Tax oncoprotein is the key viral determinant for NF?B activation. Our previous studies showed that the classical and especially, the alternative NF?B pathways were critical in conferring resistance to apoptosis. The current study will use innovative, physiological lymphoma models to define the role in tumorigenesis of each NF?B pathway and identify the key NF?B target gene responsible for these effects.
Aim 1. Which NF?B pathway is critical for HTLV tumorigenesis in humanized mice? In this study, a new humanized mouse model is used for HTLV-1 infection and lymphoma development. We will use viral variants expressing Tax mutants with defects in activating the alternative NF?B pathway or both NF?B pathways, in order to define their role in disease pathogenesis. A novel high-throughput viral integration assay is used to monitor clonality of infected cells over the course o these experiments.
Aim 2. Which NF?B targets are required for maintenance and progression of Tax transgenic tumors? In this study, a new inducible Tax transgenic mouse model of lymphoma is utilized to assess the role of specific NF?B target genes in tumor progression using microarray analysis.
Aim 3. Which NF?B target genes are critical for HTLV transformation? In this study, shRNAs to NF?B1 (p105) and NF?B2 (p100) are used to assess each individual pathway. HTLV-1 transformed cells expressing one of both of these shRNAs will be subjected to microarray analysis to determine which pathway is responsible for activation of specific target genes. Moreover, their contribution of select NF?B target genes to resistance to apoptosis will be assessed. It is expected that the information these physiologically relevant mouse models will identify key target genes that may be inhibited in therapeutic trials of ATLL or other lymphomas.

Public Health Relevance

The proposed research program uses mouse models of lymphoma (cancer of lymphocytes) caused by human T cell leukemia virus type 1 (HTLV-1). Our hypothesis is that the most important HTLV-1 gene for causing lymphoma is Tax. Moreover, we propose that the lymphoma-causing ability of Tax is linked to its ability to activate the nuclea kappa B (NF?B) pathway. NFkB is a family of DNA binding proteins that induce the expression of a number of genes. Our goal is to identify the specific genes turned on by Tax and NF?B that are most important for the development and progression of lymphoma. Our first aim utilizes a new model whereby human lymphocytes are reconstituted in immunodeficient mice. These humanized mice can be infected with HTLV-1, which replicates and causes lymphoma. We will use specific HTLV-1 variants which have alterations in their Tax sequence that result in defective NF?B activity. This assay allows us to assess the role of Tax activation of NF?B in a model that reproduces important aspects of HTLV-1 infection and lymphoma development. The second aim utilizes a different mouse model in which Tax alone is expressed, but only when mice are fed the antibiotic doxycycline. These mice develop lymphomas, which resolve when doxycycline is taken out of their diet. We will use tumors from these animals at different times after withdrawing doxycycline to determine if specific NF?B bound genes are altered as tumors resolve. These genes are most likely important for tumor progression. The third aim uses HTLV-1 immortalized cell lines derived from Aim 1. In these experiments, we will shut- off specific arms of the NF?B pathway and examine the consequences on tumor cell line growth and survival. The genes binding NFkB that are shut-off in each case will be examined to determine their individual roles in tumor cell line growth and survival in culture and after transplantation nto mice. Results from these model models will be compared to those from lymphomas characterized by high levels of NF?B. Our work will identify new targets for therapy that will be addressed in our clinical lymphoma trials. The strength of our research program has and will be based on 1) use of state-of-the-art genetic and animal techniques, 2) use of physiologically relevant tumor models, and 3) application of our preclinical findings into clinical studies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA063417-13A1
Application #
8503009
Study Section
Virology - B Study Section (VIRB)
Program Officer
Read-Connole, Elizabeth Lee
Project Start
1995-09-28
Project End
2018-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
13
Fiscal Year
2013
Total Cost
$158,641
Indirect Cost
$54,272
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Cherian, Mathew A; Olson, Sydney; Sundaramoorthi, Hemalatha et al. (2018) An activating mutation of interferon regulatory factor 4 (IRF4) in adult T-cell leukemia. J Biol Chem 293:6844-6858
Ratner, L; Rauch, D; Abel, H et al. (2016) Dose-adjusted EPOCH chemotherapy with bortezomib and raltegravir for human T-cell leukemia virus-associated adult T-cell leukemia lymphoma. Blood Cancer J 6:e408
Yeh, Chien-Hung; Bai, Xue Tao; Moles, Ramona et al. (2016) Mutation of epigenetic regulators TET2 and MLL3 in patients with HTLV-I-induced acute adult T-cell leukemia. Mol Cancer 15:15
Panfil, Amanda R; Martinez, Michael P; Ratner, Lee et al. (2016) Human T-cell leukemia virus-associated malignancy. Curr Opin Virol 20:40-46
Murphy, Jane; Hall, William W; Ratner, Lee et al. (2016) Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 494:129-42
Pujari, Rajeshree; Hunte, Richard; Thomas, Remy et al. (2015) Human T-cell leukemia virus type 1 (HTLV-1) tax requires CADM1/TSLC1 for inactivation of the NF-?B inhibitor A20 and constitutive NF-?B signaling. PLoS Pathog 11:e1004721
Baydoun, Hicham H; Cherian, Mathew A; Green, Patrick et al. (2015) Inducible nitric oxide synthase mediates DNA double strand breaks in Human T-Cell Leukemia Virus Type 1-induced leukemia/lymphoma. Retrovirology 12:71
Bangham, Charles R M; Ratner, Lee (2015) How does HTLV-1 cause adult T-cell leukaemia/lymphoma (ATL)? Curr Opin Virol 14:93-100
Romeo, Megan M; Ko, Bookyung; Kim, Janice et al. (2015) Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30(II) accessory protein and the induction of oncogenic cellular transformation by p30(II)/c-MYC. Virology 476:271-88
Cherian, Mathew A; Baydoun, Hicham H; Al-Saleem, Jacob et al. (2015) Akt Pathway Activation by Human T-cell Leukemia Virus Type 1 Tax Oncoprotein. J Biol Chem 290:26270-81

Showing the most recent 10 out of 47 publications