Type II topoisomerases are a ubiquitous class of proteins that use ATP to actively transport one DNA duplex through another. This reaction is essential for supercoiling homeostasis and resolving cytotoxic chromosome tangles prior to cell division. Type II topoisomerases are also targeted by drugs that serve as frontline clinical therapies for cancer and bacterial infections. The long-term objective of this proposal is to investigate the molecular basis of type II topoisomerase function and drug inhibition. Although rough framework for the catalytic cycle of these enzymes is in place, there remain many critical questions surrounding the mechanisms by which type II topoisomerases discriminate between different topological states of DNA, undergo allosteric transitions to drive DNA transport, and are inhibited by small molecule """"""""poisons"""""""" that stimulate DNA cleavage. Using a combination of structural, biochemical, and biophysical methods we aim to fill these gaps by: 1) Determining the structure of a """"""""poisoned"""""""" type II topoisomerase/DNA complex, 2) Establishing how a novel DNA binding and bending domain in bacterial type II topoisomerases controls substrate selectivity and functional output, and 3) Defining the molecular mechanisms and kinetics of DNA deformations and key structural rearrangements in the topoisomerase catalytic cycle. Our proposed studies will define the physical events by which type II topoisomerases facilitate the passage of one DNA segment through another to globally control DNA topology, and by which anticancer and antibacterial inhibitors subvert enzyme function. Data resulting from such efforts broadly impact a number of important scientific fronts, from understanding the dynamics of ATP-dependent molecular machines and regulation of chromosome superstructure, to defining the physical action of anti-topoisomerase therapies and aiding drug development. PROJECT NARRATIVE: Type II topoisomerases are molecular machines that disentangle DNA, as well as validated targets for frontline antibacterial and anticancer therapies. This proposal aims to understand the biochemistry and mechanics of the topoisomerase reaction, and to determine how some of the most widely-used anti-topoisomerase drugs block enzyme function.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA077373-11
Application #
7533189
Study Section
Special Emphasis Panel (ZRG1-GGG-E (02))
Program Officer
Knowlton, John R
Project Start
1999-05-01
Project End
2014-02-28
Budget Start
2009-04-01
Budget End
2010-02-28
Support Year
11
Fiscal Year
2009
Total Cost
$291,647
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Wendorff, Timothy J; Berger, James M (2018) Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage. Elife 7:
Lee, Joyce H; Wendorff, Timothy J; Berger, James M (2017) Resveratrol: A novel type of topoisomerase II inhibitor. J Biol Chem 292:21011-21022
Nodelman, Ilana M; Bleichert, Franziska; Patel, Ashok et al. (2017) Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome. Mol Cell 65:447-459.e6
Ashley, Rachel E; Blower, Tim R; Berger, James M et al. (2017) Recognition of DNA Supercoil Geometry by Mycobacterium tuberculosis Gyrase. Biochemistry 56:5440-5448
Blower, Tim R; Williamson, Benjamin H; Kerns, Robert J et al. (2016) Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113:1706-13
Hauk, Glenn; Berger, James M (2016) The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 36:85-96
Aldred, Katie J; Blower, Tim R; Kerns, Robert J et al. (2016) Fluoroquinolone interactions with Mycobacterium tuberculosis gyrase: Enhancing drug activity against wild-type and resistant gyrase. Proc Natl Acad Sci U S A 113:E839-46
Drlica, Karl; Mustaev, Arkady; Towle, Tyrell R et al. (2014) Bypassing fluoroquinolone resistance with quinazolinediones: studies of drug-gyrase-DNA complexes having implications for drug design. ACS Chem Biol 9:2895-904
Kranzusch, Philip J; Lee, Amy S Y; Wilson, Stephen C et al. (2014) Structure-guided reprogramming of human cGAS dinucleotide linkage specificity. Cell 158:1011-1021
Vos, Seychelle M; Lyubimov, Artem Y; Hershey, David M et al. (2014) Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein. Genes Dev 28:1485-97

Showing the most recent 10 out of 49 publications