Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA080250-10
Application #
6489191
Study Section
Pharmacology A Study Section (PHRA)
Program Officer
Spalholz, Barbara A
Project Start
1999-01-01
Project End
2003-12-31
Budget Start
2002-01-01
Budget End
2002-12-31
Support Year
10
Fiscal Year
2002
Total Cost
$367,333
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Pharmacology
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Capparelli, Claudia; Guido, Carmela; Whitaker-Menezes, Diana et al. (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11:2285-302
Capparelli, Claudia; Whitaker-Menezes, Diana; Guido, Carmela et al. (2012) CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle 11:2272-84
Mercier, Isabelle; Camacho, Jeanette; Titchen, Kanani et al. (2012) Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol 181:278-93
Pavlides, Stephanos; Vera, Iset; Gandara, Ricardo et al. (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264-84
Witkiewicz, Agnieszka K; Whitaker-Menezes, Diana; Dasgupta, Abhijit et al. (2012) Using the ""reverse Warburg effect"" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11:1108-17
Guido, Carmela; Whitaker-Menezes, Diana; Capparelli, Claudia et al. (2012) Metabolic reprogramming of cancer-associated fibroblasts by TGF-? drives tumor growth: connecting TGF-? signaling with ""Warburg-like"" cancer metabolism and L-lactate production. Cell Cycle 11:3019-35
Ertel, Adam; Tsirigos, Aristotelis; Whitaker-Menezes, Diana et al. (2012) Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 11:253-63
Salem, Ahmed F; Whitaker-Menezes, Diana; Lin, Zhao et al. (2012) Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells. Cell Cycle 11:2545-56
Sotgia, Federica; Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E et al. (2012) Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the ""reverse Warburg effect"" in positive lymph node tissue. Cell Cycle 11:1445-54
Capparelli, Claudia; Chiavarina, Barbara; Whitaker-Menezes, Diana et al. (2012) CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, ""fueling"" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle 11:3599-610

Showing the most recent 10 out of 99 publications