The overall goal of this renewal continues to be the study of the integrin alpha6beta4 (referred to as ?beta4?) as an approach for elucidating mechanisms involved in the genesis and progression of breast carcinoma, and for identifying targets for the clinical management of this disease. This integrin anchors basal epithelial cells to the basement membrane in inert structures termed hemidesmosomes (HDs). A seminal finding made in work funded by this grant is that beta4 is mobilized from HDs in invasive carcinomas and it translocates to the leading edge of cells where it engages F-actin and promotes migration/invasion. Elucidating the mechanism that regulates this mobilization of beta4 is essential for understanding its contribution to carcinoma biology. Also, much more needs to be learned about beta4 expression and function in human breast cancer. Indeed, a significant observation made with current funding is that beta4 expression correlates with basal-like tumors, aggressive tumors that retain features of basal epithelial cells and lack expression of ER, PR and HER2 (?triple negative?). Moreover, a ?beta4 gene signature? has been generated, a cluster of 90 genes whose expression correlates significantly with beta4 in human breast tumors and that is prognostic for reduced survival and tumor recurrence. A new phase in the study of beta4 and cancer will be initiated based on the hypothesis that beta4 functions in concert with multiple proteins to drive a specific type of breast tumor and that beta4 is a powerful tool for understanding the contribution of these other proteins to breast cancer.
The first aim will assess the hypothesis that PKC-alpha-mediated phosphorylation of three serine residues (S1356, S1360, S1364) in the beta4 intracellular domain triggers the mobilization of beta4 from HDs to F-actin and enables it to function in migration and invasion, and as a signaling receptor.
This aim will be accomplished by generating a transgenic ?knock-in? mouse in which these serines are mutated to alanines. Wound healing, beta4 signaling, and the genesis and progression of basal-like tumors will be assessed in these mice.
The second aim will define the relationship between beta4 and actin-binding proteins that are members of the beta4 signature. Specifically, the actin-bundling protein fascin will be studied because its expression correlates with basal-like tumors and its functions could facilitate tumor progression. The contribution of fascin to the progression of breast tumors will be determined, and the hypothesis that beta4 regulates fascin localization in actin protrusions and that fascin is necessary for beta4-dependent migration and invasion will be assessed. The hypothesis that PKC-alpha regulates beta4 and fascin coordinately to drive migration and invasion will also be examined.
The third aim focuses on SOX9, a transcription factor that is in the beta4 signature and the original basal-like gene cluster but whose functions in breast are unknown. The contribution of SOX9 to mammary gland development will be determined by generating a Sox9 targeted deletion in this epithelium. The involvement of SOX9 in basal-like tumors and its relationship to the beta4 signature will also be assessed.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
3R01CA080789-15S1
Application #
8396581
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Ogunbiyi, Peter
Project Start
1999-07-01
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2014-02-28
Support Year
15
Fiscal Year
2012
Total Cost
$103,760
Indirect Cost
$40,684
Name
University of Massachusetts Medical School Worcester
Department
Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Goel, Hira Lal; Pursell, Bryan; Chang, Cheng et al. (2013) GLI1 regulates a novel neuropilin-2/?6?1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med 5:488-508
Goel, Hira Lal; Pursell, Bryan; Standley, Clive et al. (2012) Neuropilin-2 regulates ýý6ýý1 integrin in the formation of focal adhesions and signaling. J Cell Sci 125:497-506
Gerson, Kristin D; Shearstone, Jeffrey R; Maddula, V S R Krishna et al. (2012) Integrin ?4 regulates SPARC protein to promote invasion. J Biol Chem 287:9835-44
Goel, Hira Lal; Chang, Cheng; Pursell, Bryan et al. (2012) VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discov 2:906-21
Samanta, S; Sharma, V M; Khan, A et al. (2012) Regulation of IMP3 by EGFR signaling and repression by ERýý: implications for triple-negative breast cancer. Oncogene 31:4689-97
Fröhlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar et al. (2011) ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res 9:1449-61
Moriarty, Charlotte H; Pursell, Bryan; Mercurio, Arthur M (2010) miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem 285:20541-6
Yang, Xiaofang; Pursell, Bryan; Lu, Shaolei et al. (2009) Regulation of beta 4-integrin expression by epigenetic modifications in the mammary gland and during the epithelial-to-mesenchymal transition. J Cell Sci 122:2473-80
Lu, Shaolei; Simin, Karl; Khan, Ashraf et al. (2008) Analysis of integrin beta4 expression in human breast cancer: association with basal-like tumors and prognostic significance. Clin Cancer Res 14:1050-8
Merdek, Keith D; Yang, Xiaoqing; Taglienti, Cherie A et al. (2007) Intrinsic signaling functions of the beta4 integrin intracellular domain. J Biol Chem 282:30322-30

Showing the most recent 10 out of 40 publications