Gemcitabine is a new nucleoside analog with clinial activity in several solid tumor types, including pancreatic and non-small cell lung cancer. While gemcitabine has shown good activity as a single agent or in combination with other chemotherapeutic agents in patients with these tumor types, we have demonstrated recently that gemcitabine also enhances the sensitivity of solid tumor cells to ionizing radiation. Preclinical studies demonstrate that gemcitabine can radiosensitize human tumor cells derived from pancreatic cancer, colorectal carcinoma, head and neck cancer, breast cancer and glioblastoma. Translation of these studies to a Phase I trial in patients with unresectable head and neck cancer demonstrated that gemcitabine can sensitize tumor tissue in vivo as well, with most patients achieving a complete response to treatment. With these encouraging results, we now propose to extend these studies both in vitro and in vivo to determine the mechanism by which gemcitabine radiosensitizes tumor cells and determine whether it is distinct from the mechanism of cytotoxicity. These studies will be performed in human head and neck cancer cells, based on our encouraging preliminary Phase I results, and we will also evaluate response of human glioblastoma cells to radiosensitization with gemcitabine based radiosensitization in vitro. Preliminary data suggests that radiosensitization with gemcitabine requires a substantial decrease in dATP, due to inhibition of ribonucleotide reductase, and not affected by the amount of gemcitabine triphosphate or the amount of drug in DNA. Furthermore, new data indicates that radiosensitization is less successful in cell lines that express wild-type p53. The studies proposed here will evaluate the roles of dATP depletion and gemcitabine nucleotide in DNA in cytotoxicity versus radiosensitization. The effect of p53 will be assessed using matched wild type and mutant p53 cell lines, as well as eliminating wt p53 using the E6 protein of human papillomavirus. These studies will be performed these cell lines in vitro and in vivo in nude mice. In addition, infusion of gemcitabine in patients prior to surgical removal of tumors will allow measurement of critical proteins required for gemcitabine metabolism, phosphorylation of gemcitabine, effect on ribonucleotide reductase and p53 status. These studies will bridge the gap between in vitro and in vivo studies and help to optimize radiosensitizing therapy with gemcitabine.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA083081-03
Application #
6377479
Study Section
Experimental Therapeutics Subcommittee 1 (ET)
Program Officer
Stone, Helen B
Project Start
1999-07-08
Project End
2003-04-30
Budget Start
2001-05-01
Budget End
2002-04-30
Support Year
3
Fiscal Year
2001
Total Cost
$207,241
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Pharmacology
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Bianchi-Smiraglia, A; Bagati, A; Fink, E E et al. (2017) Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene 36:84-96
Im, Michael M; Flanagan, Sheryl A; Ackroyd, Jeffrey J et al. (2016) Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine. Radiat Res 186:466-477
Im, Michael M; Flanagan, Sheryl A; Ackroyd, Jeffrey J et al. (2015) Drug metabolism and homologous recombination repair in radiosensitization with gemcitabine. Radiat Res 183:114-23
Bianchi-Smiraglia, A; Wawrzyniak, J A; Bagati, A et al. (2015) Pharmacological targeting of guanosine monophosphate synthase suppresses melanoma cell invasion and tumorigenicity. Cell Death Differ 22:1858-64
Wawrzyniak, Joseph A; Bianchi-Smiraglia, Anna; Bshara, Wiam et al. (2013) A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep 5:493-507
Mannava, Sudha; Moparthy, Kalyana C; Wheeler, Linda J et al. (2013) Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. Am J Pathol 182:142-51
Ladd, Brendon; Ackroyd, Jeffrey J; Hicks, J Kevin et al. (2013) Inhibition of homologous recombination with vorinostat synergistically enhances ganciclovir cytotoxicity. DNA Repair (Amst) 12:1114-21
Mannava, Sudha; Moparthy, Kalyana C; Wheeler, Linda J et al. (2012) Ribonucleotide reductase and thymidylate synthase or exogenous deoxyribonucleosides reduce DNA damage and senescence caused by C-MYC depletion. Aging (Albany NY) 4:917-22
Flanagan, Sheryl A; Cooper, Kristin S; Mannava, Sudha et al. (2012) Short hairpin RNA suppression of thymidylate synthase produces DNA mismatches and results in excellent radiosensitization. Int J Radiat Oncol Biol Phys 84:e613-20
Bester, Assaf C; Roniger, Maayan; Oren, Yifat S et al. (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435-46

Showing the most recent 10 out of 22 publications