The goals of this project are to quantify oxygen and photosensitizer distributions in tumors, describe the effects of photodynamic therapy (PDT) on these distributions, and measure the consequences on tumor response. Depletion of tumor oxygen by the illuminating light for PDT has been identified as potentially therapy-limiting. Methods of studying this oxygen depletion have included polarographic needle probe measurement of tissue PO(2) and spectroscopic determination of blood oxygen concentration. Tumor-averaged measurements of oxygen concentration indicate that PDT can create severe tumor hypoxia, but these methods lack the spatial resolution to detect gradients in oxygen distribution. We hypothesize that tumor responses to PDT will be determined by the spatial distribution of oxygen relative to targets of damage (e.g. the vascular endothelium) and photosensitizer biodistribution. The description of oxygen and sensitizer distributions during PDT could suggest reasons for treatment failure and facilitate the development of more effective treatment protocols. A fluorinated series of 2-nitroimidazole hypoxic markers, including the drugs EF3 and EF5, has been developed within our laboratories. Hypoxic markers are a unique means to investigate the regional effects of PDT on tumor oxygenation. EF3 will be used to quantify the oxygenation of murine tumors through immunohistochemistry of frozen sections and flow cytometry of cell suspensions. Patterns and intensities of hypoxic marker binding will be compared to those of photosensitizer distribution (determined by their inherent fluorescence), tumor vascularity (labeled by antibodies), tumor perfusion (labeled by injected fluorescent dyes), and apoptosis (detected by commercial kits). Gradients in tumor oxygenation, which may exist as a function of distance from the blood vessels, will be quantified. The consequences of oxygen maintenance or depletion at the blood vessels will be examined in terms of PDT-associated vascular damage, including the development of necrosis and apoptosis. The manipulation of fluence rate and drug dose to control local oxygen depletion and improve tumor response will be examined. Investigations will be carried out using three clinically relevant photosensitizers, Photofrin, Foscan and Lutex.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA085831-04
Application #
6744747
Study Section
Radiation Study Section (RAD)
Program Officer
Stone, Helen B
Project Start
2001-04-01
Project End
2006-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
4
Fiscal Year
2004
Total Cost
$301,348
Indirect Cost
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Davis 4th, Richard W; Snyder, Emma; Miller, Joann et al. (2018) Luminol Chemiluminescence Reports Photodynamic Therapy-Generated Neutrophil Activity In Vivo and Serves as a Biomarker of Therapeutic Efficacy. Photochem Photobiol :
Yan, Lesan; Amirshaghaghi, Ahmad; Huang, Dennis et al. (2018) Protoporphyrin IX (PpIX)-Coated Superparamagnetic Iron Oxide Nanoparticle (SPION) Nanoclusters for Magnetic Resonance Imaging and Photodynamic Therapy. Adv Funct Mater 28:
Ahn, Peter H; Finlay, Jarod C; Gallagher-Colombo, Shannon M et al. (2018) Lesion oxygenation associates with clinical outcomes in premalignant and early stage head and neck tumors treated on a phase 1 trial of photodynamic therapy. Photodiagnosis Photodyn Ther 21:28-35
Yan, Lesan; Miller, Joann; Yuan, Min et al. (2017) Improved Photodynamic Therapy Efficacy of Protoporphyrin IX-Loaded Polymeric Micelles Using Erlotinib Pretreatment. Biomacromolecules 18:1836-1844
Grossman, Craig E; Carter, Shirron L; Czupryna, Julie et al. (2016) Fluence Rate Differences in Photodynamic Therapy Efficacy and Activation of Epidermal Growth Factor Receptor after Treatment of the Tumor-Involved Murine Thoracic Cavity. Int J Mol Sci 17:
Gallagher-Colombo, Shannon M; Miller, Joann; Cengel, Keith A et al. (2015) Erlotinib Pretreatment Improves Photodynamic Therapy of Non-Small Cell Lung Carcinoma Xenografts via Multiple Mechanisms. Cancer Res 75:3118-26
Zhu, Timothy C; Kim, Michele M; Liang, Xing et al. (2015) In-vivo singlet oxygen threshold doses for PDT. Photonics Lasers Med 4:59-71
Gallagher-Colombo, Shannon M; Quon, Harry; Malloy, Kelly M et al. (2015) Measuring the Physiologic Properties of Oral Lesions Receiving Fractionated Photodynamic Therapy. Photochem Photobiol 91:1210-8
Han, Sung Wan; Mesquita, Rickson C; Busch, Theresa M et al. (2014) A Method for Choosing the Smoothing Parameter in a Semi-parametric Model for Detecting Change-points in Blood Flow. J Appl Stat 41:26-45
Maas, Amanda L; Carter, Shirron L; Wileyto, E Paul et al. (2012) Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Cancer Res 72:2079-88

Showing the most recent 10 out of 27 publications