An underlying genomic instability is required for the generation of multiple lesions that are characteristic of cancer. Aneuploidy, a common form of genomic instability, is a direct result of chromosomal missegregation during mitosis. Over the course of evolution, eukaryotic cells have developed sophisticated molecular mechanisms to maintain the physical association between sister chromatids during the S, G2, and early mitotic phases of the cell cycle until the onset of anaphase to prevent the adverse consequences of abnormal chromosomal segregation. Sister chromatid cohesion is largely achieved by the cohesin complex. In vertebrates, cohesin dissociates from the chromosome arm during prophase, but not from its centromere. Recent studies revealed that Shugoshin-1 (Sgo1), an evolutionarily conserved protein, protects centromeric cohesin during early mitosis and that the suppression of Sgo1 activity results in premature chromatid separation and massive mitotic arrest, followed by mitotic catastrophe. We recently found sSgo1--a major splice variant --exhibits no kinetochore localization and instead, it is enriched at the spindle poles and mitotic spindles during mitosis, suggesting a role for this protein in centrosome dynamics. Supporting this, RNAi- mediated Sgo1 knock-down results in depletion of both isoforms (namely, the full length Sgo1 and the short sSgo1), as well as in the formation of multiple spindle poles in mitotic cells. Given two distinct activities associated with Sgo1, we hypothesize that Sgo1 protects cohesion of sister chromatids and centrioles, both of which are central to accurate segregation of chromosomes, maintenance of chromosomal stability, and suppression of aneuploidy and tumorigenesis in vivo. To test this hypothesis, we propose to (i) study whether Sgo1's roles in centromeric cohesion and spindle pole/microtubule dynamics are each mediated by a major splice variant, (ii) determine cellular and molecular mechanisms by which sSgo1 regulates spindle pole integrity during mitosis, and (iii) investigate whether Sgo1 down-regulation or its haplo-insufficiency contributes to oncogenic transformation both in vivo and in vitro. Given the importance of sister chromatid and centriole cohesion in the maintenance of genomic stability, further characterization of Sgo1/sSgo1 and their regulation may provide invaluable insights into the pathogenesis of cancer as well as a new target for therapeutic intervention.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Mietz, Judy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Public Health & Prev Medicine
Schools of Medicine
New York
United States
Zip Code
Choi, Byeong Hyeok; Chen, Changyan; Philips, Mark et al. (2018) RAS GTPases are modified by SUMOylation. Oncotarget 9:4440-4450
Yamada, H Y; Kumar, G; Zhang, Y et al. (2016) Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung. Oncogenesis 5:e256
Wang, Ling; González, Sheyla; Dai, Wei et al. (2016) Effect of Hypoxia-regulated Polo-like Kinase 3 (Plk3) on Human Limbal Stem Cell Differentiation. J Biol Chem 291:16519-29
Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting et al. (2016) Antagonizing pathways leading to differential dynamics in colon carcinogenesis in Shugoshin1 (Sgo1)-haploinsufficient chromosome instability model. Mol Carcinog 55:600-10
Restuccia, Agnese; Yang, Feikun; Chen, Changyan et al. (2016) Mps1 is SUMO-modified during the cell cycle. Oncotarget 7:3158-70
Park, Sung-Hyun; Xie, Steve; Rao, Chinthalapally V et al. (2016) Haplo-insufficiency of both BubR1 and SGO1 accelerates cellular senescence. J Hematol Oncol 9:7
Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting et al. (2016) Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1-/+ Mice. Cancer Res 76:630-42
Yang, Feikun; Chen, Yan; Dai, Wei (2015) Sumoylation of Kif18A plays a role in regulating mitotic progression. BMC Cancer 15:197
Yamada, Hiroshi Y; Zhang, Yuting; Reddy, Arun et al. (2015) Tumor-promoting/progressing role of additional chromosome instability in hepatic carcinogenesis in Sgo1 (Shugoshin 1) haploinsufficient mice. Carcinogenesis 36:429-40
Tsui, S; Dai, W; Lu, L (2014) CCCTC-binding factor mediates effects of glucose on beta cell survival. Cell Prolif 47:28-37

Showing the most recent 10 out of 47 publications