Aureolic acid-type anticancer agents, such as mithramycin (MTM), chromomycin (CMM) and durhamycin (DHM), are potent anticancer and anti-HIV drugs with a unique mode-of-action. They inhibit the growth of cancer cells by cross-linking GC-rich DNA thereby shutting down specificity-protein (Sp)-dependent pathways toward various proto-oncogenes including c-myc and c-src, the latter being associated with the unique hypocalcemic activity found for these drugs. Particularly, MTM is important, and has become a popular biochemical tool to study Sp-dependent signal transduction pathways, but -due to its toxic side effects- is rarely used as anticancer agent, except for the treatment of tumor hypercalcemia refractory to other chemotherapy. However, MTM was identified in 2011 by the NCI as the only lead from a screen of 50,000 compounds that inhibits the EWS-FLI1 transcription factor responsible for the highly malignant phenotype of Ewing sarcomas, which often affect children and were untreatable for the past 40 years. In addition, another NCI group found in June 2012 that MTM represses cigarette smoke induced ABCG2 efflux pumps responsible for the drug resistance of lung and esophageal cancers, and inhibited multiple stem-cell related pathways relevant for tumorigenicity and proliferation of such cancers. A few years ago MTM was identified as a potential lead drug against neurological diseases, arthritis, and for the treatment of hematologic disorders. All these new applications require only very small, less toxic concentrations of the drug, although the mode-of-action in these contexts remains obscure, particularly the mode affecting the EWS-FLI1 transcription factor. MTM's biosynthesis has been studied intensely during the previous funding periods of this research project, and consequently pursued combinatorial biosynthetic efforts revealed various biosynthetic intermediates and many new MTM-analogues, which allowed deducing important structure-activity-relationships. Two regions are of special interest: First, a modification of the 3-side chain, first exemplified in the superior analogues MTM SK and MTM SDK, led to much better anticancer activity profiles with a greatly improved therapeutic index compared to MTM itself. Second, exchange of the D-mycarose sugar in E-position of MTM's trisaccharide chain by D-digitoxose led to superior analogues with greatly reduced toxic side effects. This now allows for new strategies to further concentrate on these regions of the molecule for further drug optimization. During the previous biosynthetic studies biosynthetic intriguing and interesting key enzymes were discovered, which need to be further investigated, particularly the co-dependent enzymes MtmGIV/MtmC (bifunctional glycosyltransferase/methyltransferase-ketoreductase), MtmOIV/MtmW (C-C-bond cleaving oxygenase/ketoreductase), which play key roles for the 3-side chain and the trisaccharide chain formation. Furthermore, the PKS release remains unclear, and it is hypothesized that another co-dependent enzyme pair, namely oxygenase MtmOII and cyclase MtmX play an important role for this process. The goal here is to gain a deeper understanding of the biosynthetic roles, mechanisms and interactions of these key enzymes of the MTM pathway, to pave the way for the optimization and re-engineering of these enzymes that are crucial for novel, further improved MTM derivatives. It is planned to (a) further investigate unclear biosynthetic steps and mechanisms of the MTM and other aureolic acid pathways, (b) to further develop strategies for the selective generation of new, improved MTM analogues including selective 3-side chain and sugar exchange/glycorandomization strategies, (c) to analyze intriguing enzymes, particularly recently discovered co- dependent enzyme pairs. New resulting MTM analogues will be submitted to the NCI DTP (developmental therapeutics program) for further mechanistic investigations.

Public Health Relevance

The proposed work aims to develop and refine a new generation of aureolic acid type natural product analogues with significantly diminished toxicity that will be useful as anticancer drugs and/or as drugs to treat neurological diseases, arthritis and hematologic disorders. To enable the production of these fine-tuned drugs through combinatorial biosynthesis or chemo-enzymatic engineering, in-depth research of the biosynthetic machinery of three aureolic acid pathways will be explored, including key enzymes, followed by enzyme re- engineering. In addition, based on so far achieved structure-activity-relationship studies, chemoenzymatic approaches for drug derivatization, glycosylation exchange methods and chemoenzymatic glycorandomization techniques will be applied to selectively alter crucial structural features.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA091901-15
Application #
9306779
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Fu, Yali
Project Start
2001-06-01
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2019-06-30
Support Year
15
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40526
Savi, Daiani C; Shaaban, Khaled A; Gos, Francielly Maria Wilke Ramos et al. (2018) Phaeophleospora vochysiae Savi & Glienke sp. nov. Isolated from Vochysia divergens Found in the Pantanal, Brazil, Produces Bioactive Secondary Metabolites. Sci Rep 8:3122
de Medeiros, Aliandra G; Savi, Daiani C; Mitra, Prithiba et al. (2018) Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiol (Praha) 63:499-505
Gao, Guixi; Liu, Xiangyang; Xu, Min et al. (2017) Formation of an Angular Aromatic Polyketide from a Linear Anthrene Precursor via Oxidative Rearrangement. Cell Chem Biol 24:881-891.e4
Goswami, Anwesha; Liu, Xiaodong; Cai, Wenlong et al. (2017) Evidence that oxidative dephosphorylation by the nonheme Fe(II), ?-ketoglutarate:UMP oxygenase occurs by stereospecific hydroxylation. FEBS Lett 591:468-478
Salem, Shaimaa M; Weidenbach, Stevi; Rohr, Jürgen (2017) Two Cooperative Glycosyltransferases Are Responsible for the Sugar Diversity of Saquayamycins Isolated from Streptomyces sp. KY 40-1. ACS Chem Biol 12:2529-2534
Panchuk, Rostyslav R; Lehka, Lilya V; Terenzi, Alessio et al. (2017) Rapid generation of hydrogen peroxide contributes to the complex cell death induction by the angucycline antibiotic landomycin E. Free Radic Biol Med 106:134-147
Wang, Guojun; Chen, Jing; Zhu, Haining et al. (2017) One-Pot Enzymatic Total Synthesis of Presteffimycinone, an Early Intermediate of the Anthracycline Antibiotic Steffimycin Biosynthesis. Org Lett 19:540-543
Hou, Caixia; Weidenbach, Stevi; Cano, Kristin E et al. (2016) Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1. Nucleic Acids Res 44:8990-9004
Pahari, Pallab; Saikia, Ujwal Pratim; Das, Trinath Prasad et al. (2016) Synthesis of Psoralidin derivatives and their anticancer activity: First synthesis of Lespeflorin I1. Tetrahedron 72:3324-3334
Jackson, David R; Yu, Xia; Wang, Guojung et al. (2016) Insights into Complex Oxidation during BE-7585A Biosynthesis: Structural Determination and Analysis of the Polyketide Monooxygenase BexE. ACS Chem Biol 11:1137-47

Showing the most recent 10 out of 65 publications