Studies of human and mouse prostate cancer indicate that the homeodomain-containing transcription factor Nkx3.1 is an important haplo-insufficient tumor suppressor gene involved in prostate tumor initiation. Nkx3.1 protein expression is lost in human and mouse prostate tumors, and a recent study has found Nkx3.1 mutations in hereditary prostate cancer. We have generated and characterized conventional and conditional Nkx3.1 mutant mice. These mice develop prostatic epithelial hyperplasia and dysplasia and have been extensively studied as a model of prostatic intraepithelial neoplasia (PIN). In these animals, the exit of differentiating prostate luminal epithelial cells from the cell cycle is delayed, resulting in prostatic epithelial hyperplasia and subsequently PIN. Further analysis of Nkx3.1 mutant mice has revealed several features that begin to shed light on the mechanisms of tumor suppression by this protein. Nkx3.1 regulates a class of genes in a dosage-sensitive and stochastic manner, a phenomenon that may underlie haplo-insufficiency and which appears to be dictated by the differential chromatin states of target genes. Nkx3.1 regulates the expression of cell cycle regulators as well as a unique class of androgen target genes. Further, loss of Nkx3.1 dysregulates the expression of pro- and anti-oxidant enzymes (including peroxiredoxin 6, glutathione peroxidase 3 and sulfhydryl oxidase 6) resulting in loss of protection against oxidative damage. It is our hypothesis that loss of Nkx3.1 promotes prostate tumor initiation by deregulating multiple gene programs that alter cell cycle exit, androgen signaling, and the anti-oxidant response. We have outlined specific experi- ments to test this hypothesis according to the following aims: 1) To examine the regulation and function of dosage-sensitive Nkx3.1 target genes. 2) To define the regulation and function of genes induced by androgen specifically in Nkx3.1-deficient cells. 3) To test the notion that disruption of the anti-oxidant defense system in Nkx3.1 mutant mice leads to the accumulation of genetic mutations. PROJECT NARRATIVE The significance of these studies lies in their potential to increase our understanding of the mechanisms of prostate tumor initiation and to generate molecular targets for diagnosis and prevention in a preclinical model.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA094858-10
Application #
8207272
Study Section
Cancer Genetics Study Section (CG)
Program Officer
Yassin, Rihab R,
Project Start
2002-07-01
Project End
2014-01-31
Budget Start
2012-02-01
Budget End
2014-01-31
Support Year
10
Fiscal Year
2012
Total Cost
$233,032
Indirect Cost
$81,078
Name
Vanderbilt University Medical Center
Department
Pathology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Holder, Sheldon L; Abdulkadir, Sarki A (2014) PIM1 kinase as a target in prostate cancer: roles in tumorigenesis, castration resistance, and docetaxel resistance. Curr Cancer Drug Targets 14:105-14
Martinez, Erin E; Darke, Amy K; Tangen, Catherine M et al. (2014) A functional variant in NKX3.1 associated with prostate cancer risk in the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Prev Res (Phila) 7:950-7
Logan, Monica; Anderson, Philip D; Saab, Shahrazad T et al. (2013) RAMP1 is a direct NKX3.1 target gene up-regulated in prostate cancer that promotes tumorigenesis. Am J Pathol 183:951-63
Kim, J; Roh, M; Doubinskaia, I et al. (2012) A mouse model of heterogeneous, c-MYC-initiated prostate cancer with loss of Pten and p53. Oncogene 31:322-32
Martinez, Erin E; Anderson, Philip D; Logan, Monica et al. (2012) Antioxidant treatment promotes prostate epithelial proliferation in Nkx3.1 mutant mice. PLoS One 7:e46792
Anderson, Philip D; McKissic, Sydika A; Logan, Monica et al. (2012) Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis. J Clin Invest 122:1907-19
Kim, Seog-Young; Rhee, Juong G; Song, Xinxin et al. (2012) Breast cancer stem cell-like cells are more sensitive to ionizing radiation than non-stem cells: role of ATM. PLoS One 7:e50423
Kim, Hyun-Seok; Patel, Krish; Muldoon-Jacobs, Kristi et al. (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41-52
Roh, Meejeon; Abdulkadir, Sarki A (2010) Targeting the endothelin receptor in prostate cancer bone metastasis: Back to the mouse? Cancer Biol Ther 9:615-7
Kim, Jongchan; Eltoum, Isam-Eldin A; Roh, Meejeon et al. (2009) Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer. PLoS Genet 5:e1000542

Showing the most recent 10 out of 15 publications