Over the past several years it has become increasingly evident that cancer and normal development share many properties. Among other things, both processes involve alterations in cell proliferation and differentiation, alterations in cell death, neovascularization, cell motility, and invasion of surrounding tissue. Genes involved in these processes during normal development may therefore contribute to tumorigenesis if misexpressed. HSIX1 belongs to the superfamily of homeobox genes that encode transcription factors important for normal development, Its overexpression can attenuate the DNA damage-induced G2 cell cycle checkpoint in mammary carcinoma cells, providing evidence for its role in proliferative processes and suggesting a means through which it may affect tumorigenesis. Indeed, the gene is upregulated in 44 percent of primary breast cancers and 90 percent of metastatic lesions examined. Overexpression of HSIX1 in MCF7 cells significantly increases tumor burden in nude mice, suggesting that its role in cancer is causative, and not merely correlative. This proposal addresses the regulation of HSIX1, as well as the genes it regulates, in an effort to dissect the pathway (both upstream and downstream) through which HSIX1 affects cell cycle control and tumorigenesis.
Specific aims 1 and 2 address the post-translational mechanisms by which the HSIX1 protein is regulated in the cell cycle in an effort to demonstrate whether this regulation is critical for its role in the G2 checkpoint and in tumorigenesis. Specifically, we will investigate how (a) mitotic phosphorylation and (b) proteasome-mediated degradation affect the role of HSIX1 in the G2 checkpoint and in tumorigenesis. This will be done using a variety of molecular biological, biochemical, and cell biological approaches, including irradiation assays in cell culture and nude mouse tumor assays. The last specific aim extends the proposal to identify genes transcriptionally regulated by HSIX1 in the G2 phase or at the G2/M boundary, with the goal of elucidating pathways important in HSIX1 control of the cell cycle and tumorigenesis. Methods will include examining known regulators of the G2 cell cycle checkpoint as well as microarray analysis. HSIX1 provides us with a unique opportunity to examine the relationship between developmental genes, cell cycle control, and cancer. A homeobox gene that is overexpressed in cancer cells but is normally absent or expressed at low levels in noncancerous, differentiated cells from the same tissue may serve as an ideal drug target, assuming that development of the organ is not essential at the time the cancer arises.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA095277-03
Application #
6732614
Study Section
Special Emphasis Panel (ZRG1-SSS-1 (02))
Program Officer
Spalholz, Barbara A
Project Start
2002-04-01
Project End
2007-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
3
Fiscal Year
2004
Total Cost
$273,675
Indirect Cost
Name
University of Colorado Denver
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Vartuli, Rebecca L; Zhou, Hengbo; Zhang, Lingdi et al. (2018) Eya3 promotes breast tumor-associated immune suppression via threonine phosphatase-mediated PD-L1 upregulation. J Clin Invest 128:2535-2550
Zhang, Lingdi; Zhou, Hengbo; Li, Xueni et al. (2018) Eya3 partners with PP2A to induce c-Myc stabilization and tumor progression. Nat Commun 9:1047
Guarnieri, A L; Towers, C G; Drasin, D J et al. (2018) The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene 37:3879-3893
Tavares, Andre L P; Cox, Timothy C; Maxson, Robert M et al. (2017) Negative regulation of endothelin signaling by SIX1 is required for proper maxillary development. Development 144:2021-2031
Neelakantan, Deepika; Zhou, Hengbo; Oliphant, Michael U J et al. (2017) EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 8:15773
Zhou, Hengbo; Neelakantan, Deepika; Ford, Heide L (2017) Clonal cooperativity in heterogenous cancers. Semin Cell Dev Biol 64:79-89
Towers, Christina G; Ford, Heide L (2016) A tale of two ends. Cell Cycle 15:1523-4
Neelakantan, Deepika; Drasin, David J; Ford, Heide L (2015) Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adh Migr 9:265-76
Drasin, David J; Guarnieri, Anna L; Neelakantan, Deepika et al. (2015) TWIST1-Induced miR-424 Reversibly Drives Mesenchymal Programming while Inhibiting Tumor Initiation. Cancer Res 75:1908-21
Blevins, Melanie A; Towers, Christina G; Patrick, Aaron N et al. (2015) The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin Ther Targets 19:213-25

Showing the most recent 10 out of 38 publications