Tumor promotion is a reversible and non-genotoxic stage in carcinogenesis and, as a consequence, the various components of this process are central targets for the development of mechanism-based anticancer and chemopreventive drugs. In the mouse skin model of chemical-induced carcinogenesis, tumor promotion is achieved by exposure of carcinogen-treated epidermis to phorbol esters, which induce the clonal expansion of those keratinocytes carrying the carcinogen-induced activating mutation in the H-Ras gene. The nature of the interaction between phorbol esters and Ras signaling in tumor promotion has not been defined yet. Although protein kinase C (PKC) has historically been considered responsible for all phorbol ester actions, the discovery of non-PKC receptors casts doubts on the assumption of an exclusive PKC-mediated effect. We have recently characterized the novel Ras activator RasGRP1 as a high affinity receptor for phorbol esters, and our preliminary data indicate that RasGRP1 is expressed in the epidermal keratinocyte, the target cell in chemical carcinogenesis. These data suggest that RasGRP1 may represent a novel and direct link between Ras and phorbol ester signaling in the epidermis. The present proposal will address this possibility. We hypothesize that phorbol esters can modulate RasGRP1 activity in keratinocytes, and that this modulation contributes to the mechanisms activated by tumor promotion during cancer formation.
The specific aims to test the hypothesis are: (1) to define the functional role of RasGRP1 on the responses induced by phorbol esters in keratinocytes, including growth arrest, differentiation, and apoptosis; (2) to determine if RasGRP1 signaling is altered in initiated (H-Ras-mutated) keratinocytes, either by changes in the level of expression of RasGRP1, changes in substrate affinity, or both; and (3) to establish in vivo models to investigate the role of RasGRP1 in skin carcinogenesis and tumor promotion (knockout and transgenic animals for RasGRP1). Taken together, the results of this study have the potential to unravel a new molecular target for the transmission of phorbol ester-signals involved in carcinogenesis. This information could lead to future approaches for developing novel chemopreventive compounds targeted to tumor promotion events.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA096841-01A1
Application #
6678116
Study Section
Chemical Pathology Study Section (CPA)
Program Officer
Poland, Alan P
Project Start
2003-09-02
Project End
2008-07-31
Budget Start
2003-09-02
Budget End
2004-07-31
Support Year
1
Fiscal Year
2003
Total Cost
$272,941
Indirect Cost
Name
University of Hawaii
Department
Type
Organized Research Units
DUNS #
965088057
City
Honolulu
State
HI
Country
United States
Zip Code
96822
Jorand, Raphael; Biswas, Sunetra; Wakefield, Devin L et al. (2016) Molecular signatures of mu opioid receptor and somatostatin receptor 2 in pancreatic cancer. Mol Biol Cell 27:3659-3672
Sharma, Amrish; Fonseca, Lauren L; Rajani, Cynthia et al. (2014) Targeted deletion of RasGRP1 impairs skin tumorigenesis. Carcinogenesis 35:1084-91
Diez, Federico R; Garrido, Ann A; Sharma, Amrish et al. (2009) RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. Am J Pathol 175:392-9
Luke, Courtney T; Oki-Idouchi, Carolyn E; Cline, J Mark et al. (2007) RasGRP1 overexpression in the epidermis of transgenic mice contributes to tumor progression during multistage skin carcinogenesis. Cancer Res 67:10190-7
Oki-Idouchi, Carolyn E; Lorenzo, Patricia S (2007) Transgenic overexpression of RasGRP1 in mouse epidermis results in spontaneous tumors of the skin. Cancer Res 67:276-80
Tuthill, Matthew C; Oki, Carolyn E; Lorenzo, Patricia S (2006) Differential effects of bryostatin 1 and 12-O-tetradecanoylphorbol-13-acetate on the regulation and activation of RasGRP1 in mouse epidermal keratinocytes. Mol Cancer Ther 5:602-10