Mutations in APC are thought to initiate colon tumor development by promoting proliferation and preventing proper differentiation of colonocytes. In the previous funding period, we effectively employed zebrafish as a genetic model system to show that retinoic acid is essential for intestinal development and differentiation and that APC controls intestinal cell differentiation by controlling the production of retinoic acid. Our published studies indicate that APC regulates the expression of retinol dehydrogenases and were the first to demonstrate an essential role for, and dynamic regulation of, retinol dehydrogenases in vertebrate tissue development. Moreover, our work has established novel roles for APC and retinoic acid in promoting enterocyte differentiation. As a link between APC and retinoic acid, we demonstrated that APC controls the stability of the transcriptional co-repressor, C-terminal binding protein (CtBP) which can directly repress retinol dehydrogenases and intestinal cell differentiation. Further, we have demonstrated that dysregulation of CtBP and retinoic acid production precedes activation of Wnt signaling. This observation points to loss of retinoic acid as the initiating event following Apc mutation rather than dysregulation of Wnt. Consistent with this model, our most recent published and preliminary data define an unexpected connection between APC, retinoic acid and a novel DNA demethylase system that appears to maintain intestinal cells in a progenitor-like state in zebrafish harboring Apc mutations. In this competitive renewal, we build upon our previous studies to define the mechanistic interplay between Apc, retinoic acid and the novel DNA demethylase system in governing intestinal cell fate and differentiation. We hypothesize that the APC tumor suppressor plays an essential role in normal enterocyte differentiation by controlling the production of retinoic acid. Retinoic acid, in turn, regulates remodeling of DNA methylation within intestinal progenitor cells by suppressing the activity of a novel DNA demethylase. Downregulation of the demethylase allows methylation-dependent silencing of key genes required for intestinal differentiation.

Public Health Relevance

Our long-term goal is to facilitate the development of new preventive measures for colon adenoma formation by understanding the earliest cellular perturbations that follow APC mutation. This project supports our long- term goal in a number of ways. First, it will expand our understanding of how APC contributes to the development of normal intestinal epithelium. This understanding could support a testable clinical hypothesis using new combined therapies for preventing human colon cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Woodhouse, Elizabeth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Internal Medicine/Medicine
Schools of Medicine
Salt Lake City
United States
Zip Code
Dehghanizadeh, Somaye; Khoddami, Vahid; Mosbruger, Timothy L et al. (2018) Active BRAF-V600E is the key player in generation of a sessile serrated polyp-specific DNA methylation profile. PLoS One 13:e0192499
Samadder, N Jewel; Kuwada, Scott K; Boucher, Kenneth M et al. (2018) Association of Sulindac and Erlotinib vs Placebo With Colorectal Neoplasia in Familial Adenomatous Polyposis: Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol 4:671-677
Sandoval, Imelda T; Delacruz, Richard Glenn C; Miller, Braden N et al. (2017) A metabolic switch controls intestinal differentiation downstream of Adenomatous polyposis coli (APC). Elife 6:
Jones, Kelly A; Kim, Phillip D; Patel, Bhavinkumar B et al. (2013) Immunodepletion plasma proteomics by tripleTOF 5600 and Orbitrap elite/LTQ-Orbitrap Velos/Q exactive mass spectrometers. J Proteome Res 12:4351-65
Hammoud, Saher Sue; Cairns, Bradley R; Jones, David A (2013) Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol 25:177-83
Sandoval, Imelda T; Manos, Elizabeth J; Van Wagoner, Ryan M et al. (2013) Juxtaposition of chemical and mutation-induced developmental defects in zebrafish reveal a copper-chelating activity for kalihinol F. Chem Biol 20:753-63
Garrido-Laguna, I; McGregor, K A; Wade, M et al. (2013) A phase I/II study of decitabine in combination with panitumumab in patients with wild-type (wt) KRAS metastatic colorectal cancer. Invest New Drugs 31:1257-64
Maddox, Jessica; Shakya, Arvind; South, Samuel et al. (2012) Transcription factor Oct1 is a somatic and cancer stem cell determinant. PLoS Genet 8:e1003048
Ridges, Suzanne; Heaton, Will L; Joshi, Deepa et al. (2012) Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119:5621-31
Wu, Shan-Fu; Zhang, Haiying; Hammoud, Saher Sue et al. (2011) DNA methylation profiling in zebrafish. Methods Cell Biol 104:327-39

Showing the most recent 10 out of 14 publications