The hypothesis of the original grant was that fucosylation increases with the development of hepatocellular carcinoma (HCC) and that fucosylated glycoprotein(s) will make sensitive and specific markers of HCC. This hypothesis has been confirmed and in our analysis of over 1000 patient samples, we have clearly shown that fucosylated glycoproteins can make sensitive and specific markers of HCC, either alone or in combination with other markers. However, in our analysis, we have determined that in addition to core fucosylation there are many other changes that occur with liver disease. Some of these changes are cancer specific and can be used to complement our existing markers, while others can occur with just liver disease (inflammation) and lead to false positives. Thus in aim 1, we will develop novel and unique reagents that will dramatically improve our assays and continue our discovery efforts to find biomarkers that can be used clinically for the management of HCC.
In aim 2 we will utilize our new lectins and continue our discovery efforts in an effort to find new biomarkers in biomarker negative populations that can complement our existing markers and lead to 100% sensitivity and 100% specificity. Finally in aim 3, we will test our lead markers in a NCI sponsored study comprising of over 350 cases of HCC and which we pre-qualified for. At the end of this 5 year period we will have validated our biomarkers and definitively proved our hypothesis that fucosylated proteins can make sensitive and specific markers of HC.
This research project will help develop a non invasive method for the early detection of liver cancer. Liver cancer rates have doubled in the last 10 years and are continuing to rise. Unfortunately, the 5 year survival rates are only 8%, primarily due to late diagnosis. As is the case with breast cancer and cervical cancer, early detection is vital to reduce the morbidity associated with this cancer.
Showing the most recent 10 out of 45 publications