The long term of our studies is to understand the immunobiology of the immunosuppressive/proangiogenic leukocytes that phenotypically resemble dendritic cells and distinctively accumulate in human and mouse ovarian cancer, termed by us Vascular Leukocytes (VLCs). This proposal focuses on comprehending the molecular factors that ultimately drive the tolerogenic activity and selective accumulation of VLCs (and regulatory DCs in general) at tumor locations. Key findings for the ongoing grant have been: The overexpression of special AT-rich sequence binding protein 1 (Satb1), a master programmer controlling genome-wide transcriptional programs, in the nuclei of tumor VLCs, in both mice and humans; the co-localization of -catenin with Satb1; and the abrogation of the immunosuppressive phenotype of VLCs by in vivo Satb1 silencing. Based on these and other findings, our central hypothesis is that Satb1 is the master programmer of the immunosuppressive activity and preferential accumulation of regulatory DCs/VLCs in ovarian cancer. Because virtually nothing is known about the role of Satb1 in myeloid leukocyte subsets, we have generated for these studies a novel conditional knockout mouse model, developed a better genetic model of ovarian cancer, and optimized silencing tools for in vivo use. With these unique resources in hand, we propose to focus the application on the following three specific aims:
In Specific Aim 1, we will define how Satb1 is the primary driver of the immunosuppressive properties of ovarian cancer-associated VLCs.
In Specific Aim 2, we will define the role of Satb1 in the accumulation of regulatory DCs/VLCs within ovarian cancer.
In Specific Aim 3, we will establish the molecular factors modulating the overexpression of Satb1 in regulatory DCs/VLCs in ovarian cancer. Our work will exert a profound effect in the field by defining Satb1 - a global organizer of genome-wide transcriptional programs - as the master regulator ultimately driving the immunosuppressive activity and preferential accumulation of VLCs in ovarian cancer, which will be applicable to regulatory DCs in other lethal tumors and has obvious implications for development of improved immunotherapies.

Public Health Relevance

Epithelial ovarian cancer kills ~15,000 Americans per year. Over the last 30 years, despite extensive research into the cell cycle and tumor cell mutations, the very poor 5- year survival rates are unchanged. Current immunotherapies rarely induce the regression of lethal epithelial cancers, due in part to an incomplete understanding of the mechanisms of tumor-induced immune evasion. The accomplishment of the proposed aims will define Satb1 as the master regulator driving the immunosuppressive phenotype and pathological mobilization of regulatory myeloid leukocytes in ovarian cancer. This understanding will provide a mechanistic rationale for new advances towards chemoprevention, early detection and effective treatment of this devastating disease, which may be applicable to other lethal epithelial tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA124515-10
Application #
8881963
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Howcroft, Thomas K
Project Start
2006-12-01
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
10
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Saglam, Ozlen; Conejo-Garcia, Jose (2018) PD-1/PD-L1 immune checkpoint inhibitors in advanced cervical cancer. Integr Cancer Sci Ther 5:
Perales-Puchalt, Alfredo; Perez-Sanz, Jairo; Payne, Kyle K et al. (2018) Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. J Leukoc Biol 103:799-805
Perales-Puchalt, Alfredo; Svoronos, Nikolaos; Rutkowski, Melanie R et al. (2017) Follicle-Stimulating Hormone Receptor Is Expressed by Most Ovarian Cancer Subtypes and Is a Safe and Effective Immunotherapeutic Target. Clin Cancer Res 23:441-453
Conejo-Garcia, Jose R; Payne, Kyle K; Svoronos, Nikolaos (2017) Estrogens drive myeloid-derived suppressor cell accumulation. Oncoscience 4:5-6
Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Allegrezza, Michael J et al. (2017) Tumor Cell-Independent Estrogen Signaling Drives Disease Progression through Mobilization of Myeloid-Derived Suppressor Cells. Cancer Discov 7:72-85
Stephen, Tom L; Payne, Kyle K; Chaurio, Ricardo A et al. (2017) SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity 46:51-64
Bitler, Benjamin G; Wu, Shuai; Park, Pyoung Hwa et al. (2017) ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol 19:962-973
Yokoyama, Yuhki; Zhu, Hengrui; Lee, Jeong Heon et al. (2016) BET Inhibitors Suppress ALDH Activity by Targeting ALDH1A1 Super-Enhancer in Ovarian Cancer. Cancer Res 76:6320-6330
Zhu, Hengrui; Bengsch, Fee; Svoronos, Nikolaos et al. (2016) BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression. Cell Rep 16:2829-2837
Allegrezza, Michael J; Rutkowski, Melanie R; Stephen, Tom L et al. (2016) Trametinib Drives T-cell-Dependent Control of KRAS-Mutated Tumors by Inhibiting Pathological Myelopoiesis. Cancer Res 76:6253-6265

Showing the most recent 10 out of 57 publications