The main focus of the present proposal is to understand the pharmacologic basis for differences in individual susceptibility to tobacco addiction and adverse health consequences of smoking. We propose to continue a program combining analytical and synthetic chemistry and clinical investigation, focusing on the metabolism, pharmacokinetics and pharmacodynamics of nicotine. Chemistry studies will include (a) developing methodology for quantitative analysis of tobacco alkaloids and metabolites and applying these methods to qualitatively and quantitatively define pathways of metabolism in humans; (b) synthesis of tobacco alkaloids and stereoisomers, metabolites and deuterium-labeled analogs for pharmacologic and metabolic studies, and (c) developing GC-MS assays for nicotine metabolites for stable isotope studies of nicotine metabolic disposition. Clinical studies will pursue the observation that habitual smokers regulate body levels of nicotine, testing the hypothesis that the rate of nicotine metabolism is an important determinant of individual differences in tobacco smoking behavior. Using stable isotope methodology, the kinetics of nicotine and cotinine and its relationship to daily intake of nicotine from smoking will be compared in various population groups. These include men and women, older and younger people, different racial groups (caucasians, blacks, hispanics and asians), and in heavy vs. light vs. nonsmokers. As different patterns of metabolism yielding different levels of active metabolites could contribute to individual differences, we will study the metabolism, disposition kinetics and pharmacologic effects of nicotine metabolites. Initially, we will study trans-3'-hydroxycotinine (3-HC); in future studies, the glucuronides of nicotine, cotinine and 3-HC as well as other metabolites. Since 3-HC is the major metabolite of nicotine, we will examine the utility of 3-HC as a biomarker of nicotine intake from tobacco. Environmental factors could affect nicotine metabolism. To begin to explore the nature of such influences, we will study the effects of phenobarbital, known to affect nicotine metabolism in animals, on nicotine and cotinine clearance as well as self-determined intake of nicotine from tobacco. We will explore the nature and mechanisms of differential tolerance to cardiovascular and metabolic effects of nicotine observed in light vs. heavy smokers. Using a computer- controlled infusion pump, we will determine quantitative parameters of tolerance to nicotine in individuals, and examine the influence of glucocorticoids on the sensitivity and development of tolerance to nicotine. To examine the hypothesis that subjective and cardiovascular consequences of nicotine are more pronounced with a rapid vs. low rate of dosing of nicotine, we will conduct a crossover study comparing the effects of cigarette smoking, transdermal nicotine (slow release) and nicotine nasal spray (rapid release). The proposed studies will clarify factors determining individual differences in tobacco consumption and effects, and may lead to more patient-specific and effective ways of treating tobacco addiction.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
2R01DA002277-15
Application #
3567983
Study Section
Special Emphasis Panel (SRCD (51))
Project Start
1979-03-01
Project End
1998-07-31
Budget Start
1993-08-01
Budget End
1994-07-31
Support Year
15
Fiscal Year
1993
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Taghavi, Taraneh; St Helen, Gideon; Benowitz, Neal L et al. (2017) Effect of UGT2B10, UGT2B17, FMO3, and OCT2 genetic variation on nicotine and cotinine pharmacokinetics and smoking in African Americans. Pharmacogenet Genomics 27:143-154
Gubner, Noah R; Kozar-Konieczna, Aleksandra; Szoltysek-Boldys, Izabela et al. (2016) Cessation of alcohol consumption decreases rate of nicotine metabolism in male alcohol-dependent smokers. Drug Alcohol Depend 163:157-64
Benowitz, Neal L; St Helen, Gideon; Dempsey, Delia A et al. (2016) Disposition kinetics and metabolism of nicotine and cotinine in African American smokers: impact of CYP2A6 genetic variation and enzymatic activity. Pharmacogenet Genomics 26:340-50
Baurley, James W; Edlund, Christopher K; Pardamean, Carissa I et al. (2016) Genome-Wide Association of the Laboratory-Based Nicotine Metabolite Ratio in Three Ancestries. Nicotine Tob Res 18:1837-1844
Ross, Kathryn C; Dempsey, Delia A; St Helen, Gideon et al. (2016) The Influence of Puff Characteristics, Nicotine Dependence, and Rate of Nicotine Metabolism on Daily Nicotine Exposure in African American Smokers. Cancer Epidemiol Biomarkers Prev 25:936-43
Benowitz, Neal L; Nardone, Natalie; Dains, Katherine M et al. (2015) Effect of reducing the nicotine content of cigarettes on cigarette smoking behavior and tobacco smoke toxicant exposure: 2-year follow up. Addiction 110:1667-75
Wassenaar, Catherine A; Conti, David V; Das, Soma et al. (2015) UGT1A and UGT2B genetic variation alters nicotine and nitrosamine glucuronidation in european and african american smokers. Cancer Epidemiol Biomarkers Prev 24:94-104
Shiffman, Saul; Dunbar, Michael S; Benowitz, Neal L (2014) A comparison of nicotine biomarkers and smoking patterns in daily and nondaily smokers. Cancer Epidemiol Biomarkers Prev 23:1264-72
Hajek, Peter; Etter, Jean-François; Benowitz, Neal et al. (2014) Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction 109:1801-10
Leventhal, Adam M; Lee, Wonho; Bergen, Andrew W et al. (2014) Nicotine dependence as a moderator of genetic influences on smoking cessation treatment outcome. Drug Alcohol Depend 138:109-17

Showing the most recent 10 out of 239 publications