The development of tolerance to benzodiazepine (BZ) anticonvulsant actions limits their clinical value and may relate to patterns of chronic abuse. BZs potentiate GABA inhibition at the GABAA receptor (GABAR) increasing Cl conductance. Regulation of the GABAR following chronic BZ treatment is well established as one mechanism underlying BZ tolerance, yet the sequence of events at brain GABA synapses which result in BZ tolerance are not well understood. Findings of electrophysiological studies in in vitro hippocampal slices, ongoing GABAR autoradiographic studies, and our initial in situ hybridization and immunohistochemical studies of GABAR subunit mRNA and protein have established that the BZ tolerant rat hippocampus provides a useful model for studying the synaptic mechanisms of BZ tolerance and have provided a basis for the proposed studies. Studies designed to evaluate the temporal relation between the functional changes associated with chronic BZ treatment and the regulation of GABARs will be carried out in the hippocampus at several time-points after discontinuing 1 week oral flurazepam (FZP) treatment. Molecular biological, immunohistochemical and electrophysiological methods will be used to address three hypotheses: 1) GABAR subunit composition is modified by chronic BZ treatment; 2) BZ and GABA actions are attenuated by chronic BZ treatment as a function of changes in presynaptic, as well as postsynaptic, GABA transmission; and 3) that changes in GABAR composition resulting from changes in mRNA expression, thus subunit protein expression, are localized to hippocampal layers associated with GABA-mediated inhibition. The magnitude and time-course of the development and reversal of chronic BZ-induced changes in the GABAergic inhibitory system and BZ and GABA agonist sensitivity are related to the degree and time-course of changes in GABAR subunits. A change in the expression of the genes encoding GABAR subunits, thus a change in subunit composition is proposed as one mechanism for GABAR regulation, therefore the expression of mRNAs for GABAR subunits (alpha (1-5), beta (1-3) and gamma (1-2)) will be systematically studied using quantitative in situ hybridization methods in hippocampal layers and temporally correlated with changes in subunit proteins using quantitative immunohistochemical methods developed in our lab. Presynaptic GABA release will be indirectly measured by a change in the frequency of mini IPSCs. The functional consequences of chronic FZP treatment on GABA and BZ pharmacology will be measured using whole-cell patch-clamp methods to measure GABA-induced currents in CAl pyramidal cells in hippocampal slices and in acutely dissociated CAl neurons. Changes in diazepam and zolpidem's effects to potentiate GABA currents will also be assessed in these two models. A functional and molecular reorganization of GABAR synapses may provide a basis for BZ tolerance.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
2R01DA004075-08A1
Application #
2434565
Study Section
Special Emphasis Panel (SRCD (11))
Program Officer
Frankenheim, Jerry
Project Start
1986-07-01
Project End
1999-12-31
Budget Start
1997-03-10
Budget End
1997-12-31
Support Year
8
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Toledo
Department
Physiology
Type
Schools of Medicine
DUNS #
807418939
City
Toledo
State
OH
Country
United States
Zip Code
43614
Xiang, K; Tietz, E I (2008) Chronic benzodiazepine-induced reduction in GABA(A) receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection. Neuroscience 157:153-63
Xiang, Kun; Earl, Damien E; Davis, Kathleen M et al. (2008) Chronic benzodiazepine administration potentiates high voltage-activated calcium currents in hippocampal CA1 neurons. J Pharmacol Exp Ther 327:872-83
Das, Paromita; Lilly, Scott M; Zerda, Ricardo et al. (2008) Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 511:832-46
Xiang, Kun; Tietz, Elizabeth I (2007) Benzodiazepine-induced hippocampal CA1 neuron alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-D-aspartic acid re Behav Pharmacol 18:447-60
Song, Jun; Shen, Guofu; Greenfield Jr, L John et al. (2007) Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons. J Pharmacol Exp Ther 322:569-81
Lilly, S M; Alvarez, F J; Tietz, E I (2005) Synaptic and subcellular localization of A-kinase anchoring protein 150 in rat hippocampal CA1 pyramidal cells: Co-localization with excitatory synaptic markers. Neuroscience 134:155-63
Van Sickle, Bradley J; Xiang, Kun; Tietz, Elizabeth I (2004) Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety. Neuropsychopharmacology 29:1994-2006
Lilly, Scott M; Zeng, X J; Tietz, E I (2003) Role of protein kinase A in GABAA receptor dysfunction in CA1 pyramidal cells following chronic benzodiazepine treatment. J Neurochem 85:988-98
Chen, S; Huang, X; Zeng, X J et al. (1999) Benzodiazepine-mediated regulation of alpha1, alpha2, beta1-3 and gamma2 GABA(A) receptor subunit proteins in the rat brain hippocampus and cortex. Neuroscience 93:33-44
Tietz, E I; Huang, X; Chen, S et al. (1999) Temporal and regional regulation of alpha1, beta2 and beta3, but not alpha2, alpha4, alpha5, alpha6, beta1 or gamma2 GABA(A) receptor subunit messenger RNAs following one-week oral flurazepam administration. Neuroscience 91:327-41

Showing the most recent 10 out of 29 publications