Basic and clinical research increasingly depends on sophisticated information technologies for storing, exchanging, and mining large volumes of data. The biomedical research community needs common bioinformatics infrastructures for locating and analyzing datasets of different types and formats and from disparate sources. The integration of data from human studies with data from model organisms, particularly the laboratory mouse, which is the most powerful and widely used animal model for studying human disease, is critical for translational research to ultimately improve diagnosis, determine individualized treatment, and predict clinical outcomes. The Mouse Phenome Project was conceived and launched at The Jackson Laboratory (JAX) to complement the mouse genome sequencing effort and to provide a research resource and integral tool for complex trait analysis. The Mouse Phenome Database (MPD; is an established phenomics database containing phenotypic and/or genotypic data for over 600 strains of mice. MPD contains a wealth of data contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders, neurosensory disorders, and drug toxicity. These studies represent ~130 research institutions in 12 countries, and are supported by ~65 funding agencies and research foundations worldwide. Building on our MPD experience to further advance the goal of accelerating biomedical research, we propose to acquire, annotate, and integrate new datasets for public access;ensure MPD data, information, and formats are consistent with community-adopted standards;and implement new tools and website features to best present and analyze those data. The intrinsic nature of phenotypes to reflect the underlying genome and its response to environmental influences is key to inferring the function of genetic determinates. Thus a high-throughput systems biology approach to identify phenotypic networks will provide insights that in turn help generate new hypotheses. We will exploit MPD's growing collection of quantitative data to build phenotypic networks, providing a framework for visualizing putative functional relationships between phenotypes and integrating this information with other biological information, such as gene networks, metabolic pathways, epigenetic information, SNPs, and copy number variants. Our work will enable cross-species identification and facilitate efforts to precisely define and classify human diseases and their risk factors, and to identify network components that are predictive of physiological and pathological responses.

Public Health Relevance

The Mouse Phenome Database (MPD; is an established community resource and web-based repository for biologically relevant data on the laboratory mouse. We will exploit MPD s growing collection of data to build functional networks critical for translational research; providing insights into mechanisms of human disease; and ultimately to improve diagnosis; determine individualized treatment; and predict clinical outcomes.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Genomics, Computational Biology and Technology Study Section (GCAT)
Program Officer
Pollock, Jonathan D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Bogue, Molly A; Grubb, Stephen C; Walton, David O et al. (2018) Mouse Phenome Database: an integrative database and analysis suite for curated empirical phenotype data from laboratory mice. Nucleic Acids Res 46:D843-D850
Bogue, Molly A; Peters, Luanne L; Paigen, Beverly et al. (2016) Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. J Gerontol A Biol Sci Med Sci 71:170-7
Schoenrock, Sarah Adams; Oreper, Daniel; Young, Nancy et al. (2016) Ovariectomy results in inbred strain-specific increases in anxiety-like behavior in mice. Physiol Behav 167:404-412
Strong, Randy; Miller, Richard A; Antebi, Adam et al. (2016) Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an ?-glucosidase inhibitor or a Nrf2-inducer. Aging Cell 15:872-84
Wiltshire, T; Ervin, R B; Duan, H et al. (2015) Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains. Genes Brain Behav 14:271-80
Bogue, Molly A; Churchill, Gary A; Chesler, Elissa J (2015) Collaborative Cross and Diversity Outbred data resources in the Mouse Phenome Database. Mamm Genome 26:511-20
Mostafavi, Sara; Ortiz-Lopez, Adriana; Bogue, Molly A et al. (2014) Variation and genetic control of gene expression in primary immunocytes across inbred mouse strains. J Immunol 193:4485-96
Grubb, Stephen C; Bult, Carol J; Bogue, Molly A (2014) Mouse phenome database. Nucleic Acids Res 42:D825-34
Crowley, James J; Kim, Yunjung; Szatkiewicz, Jin Peng et al. (2012) Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice. Mamm Genome 23:322-35
Maddatu, Terry P; Grubb, Stephen C; Bult, Carol J et al. (2012) Mouse Phenome Database (MPD). Nucleic Acids Res 40:D887-94

Showing the most recent 10 out of 15 publications