In mammals, outer hair cells provide local amplification in the cochlea that is responsible for the ear's remarkable sensitivity and frequency selectivity. While the reliance of the mammalian cochlea on local, outer hair cell based-based amplification is widely accepted, there is no agreement about the amplifying mechanism. One view is that, powered by the cell's receptor potential, somatic shape changes, called electromotility, provide mechanical feedback and thereby amplification. An alternative concept is that amplification arises as an adjunct to the cell's forward transducer process and thus resides in the sterocilia. We have now identified the gene that codes for the specialized motor protein (prestin) that produces electromotility. Thus, it is now possible to test these alternatives. We shall produce a mouse-model that lacks prestin (knockout mouse) and test its hearing. Normal hearing will imply that the second mechanism of amplification is operative, whereas significant hearing loss will show that due to the non-functional prestin, hearing has been degraded. In addition, extensive experiments are conducted on the molecular properties of prestin itself with aims of producing various antibodies against it, to determine its topology and its interaction with various agents that are known to influence outer hair cell motility.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC000089-32
Application #
6516001
Study Section
Special Emphasis Panel (ZRG1-IFCN-8 (03))
Program Officer
Donahue, Amy
Project Start
1991-01-01
Project End
2006-03-31
Budget Start
2002-04-01
Budget End
2003-03-31
Support Year
32
Fiscal Year
2002
Total Cost
$876,101
Indirect Cost
Name
Northwestern University at Chicago
Department
Other Health Professions
Type
Schools of Arts and Sciences
DUNS #
City
Evanston
State
IL
Country
United States
Zip Code
60201
Wiwatpanit, Teerawat; Lorenzen, Sarah M; CantĂș, Jorge A et al. (2018) Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 563:691-695
Takahashi, Satoe; Sun, Willy; Zhou, Yingjie et al. (2018) Prestin Contributes to Membrane Compartmentalization and Is Required for Normal Innervation of Outer Hair Cells. Front Cell Neurosci 12:211
Wiwatpanit, Teerawat; Remis, Natalie N; Ahmad, Aisha et al. (2018) Codeficiency of Lysosomal Mucolipins 3 and 1 in Cochlear Hair Cells Diminishes Outer Hair Cell Longevity and Accelerates Age-Related Hearing Loss. J Neurosci 38:3177-3189
Xu, Yingyue; Cheatham, Mary Ann; Siegel, Jonathan H (2017) Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice. J Assoc Res Otolaryngol 18:543-553
Takahashi, Satoe; Homma, Kazuaki; Zhou, Yingjie et al. (2016) Susceptibility of outer hair cells to cholesterol chelator 2-hydroxypropyl-?-cyclodextrine is prestin-dependent. Sci Rep 6:21973
Takahashi, Satoe; Cheatham, Mary Ann; Zheng, Jing et al. (2016) The R130S mutation significantly affects the function of prestin, the outer hair cell motor protein. J Mol Med (Berl) 94:1053-62
Cheatham, Mary Ann; Ahmad, Aisha; Zhou, Yingjie et al. (2016) Increased Spontaneous Otoacoustic Emissions in Mice with a Detached Tectorial Membrane. J Assoc Res Otolaryngol 17:81-8
Cheatham, Mary Ann; Edge, Roxanne M; Homma, Kazuaki et al. (2015) Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice. PLoS One 10:e0145428
Keller, Jacob Pearson; Homma, Kazuaki; Duan, Chongwen et al. (2014) Functional regulation of the SLC26-family protein prestin by calcium/calmodulin. J Neurosci 34:1325-32
Homma, Kazuaki; Duan, Chongwen; Zheng, Jing et al. (2013) The V499G/Y501H mutation impairs fast motor kinetics of prestin and has significance for defining functional independence of individual prestin subunits. J Biol Chem 288:2452-63

Showing the most recent 10 out of 31 publications