Sound stimulation of the cochlea leads to mechanoelectric activity in the organ of Corti. Outer hair cells play a central but little understood role in the normal cochlea response to sound. Furthermore, outer hair cell (OHC) activity is controlled in an almost completely unknown way by a complex innervation from the olivocochlear efferent fibers. This proposal seeks to add to our understanding of organ of Corti function by examining its mechanoelectric responses to sound and to efferent nerve electric stimulation. Organ of Corti responses will be measured as gross cochlear potentials, ear canal otoacoustic responses, receptor potentials of hair cells, and most importantly as velocity and displacement responses measured from various locations in the or an of Corti. Each of these measurements provides a different viewpoint on the performance of inner and OHCs acting together in vivo. This proposal applies a dramatic new technology for the study of cellular vibration in the inner ear. Laser feedback interferometry (LFI) is a method with sufficient sensitivity to register the vibration of nearly transparent cellular elements. LFI applied through a microscope allows one to focus a laser beam onto the different cellular structures in the organ of Corti. A detailed study of the traveling wave will provide an important empirical base for theoretical studies of organ of Corti function by providing information on mechanical displacements of its cellular structures. This understanding is necessary in order to determine how mechanical energy stimulates the inner and OHCs. LFI microscopy can provide the cellular displacement measurements needed to determine how OHCs serve as motile elements in this system. The proposal will also study the physiology of the olivocochlear efferent system and determine whether activation of the efferent nerves changes the mechanical properties of OHCs. The physiology of the descending efferent system from the inferior colliculus is included as a way to cause activation of both the medial and the lateral efferent systems in a topographic manned Finally, with this proposal we are beginning the study of the physiology of the supporting cells of the organ of Corti. Until recently supporting cells were thought to be largely passive elements only lending structural support to the system.There is mounting evidence now that Deiters' cells are motile and dynamic structures. We will measure the changes in organ of Corti vibration following types of stimulation that lead to changes in Deiters' cell morphology. Taken together the studies of this proposal will provide an understanding of: how OHCs generate high frequency selectivity and sensitivity in the normal inner ear; the function of the olivocochlear efferent system and the structural dynamics of supporting cells in the organ of Corti.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
2R01DC000141-16
Application #
2124805
Study Section
Hearing Research Study Section (HAR)
Project Start
1979-04-01
Project End
2002-01-31
Budget Start
1995-02-01
Budget End
1996-01-31
Support Year
16
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
791277940
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Chen, Fangyi; Zha, Dingjun; Yang, Xiaojie et al. (2018) Hydromechanical Structure of the Cochlea Supports the Backward Traveling Wave in the Cochlea In Vivo. Neural Plast 2018:7502648
Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa et al. (2016) Optogenetic Control of Mouse Outer Hair Cells. Biophys J 110:493-502
Krey, Jocelyn F; Drummond, Meghan; Foster, Sarah et al. (2016) Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 6:27221
Warren, Rebecca L; Ramamoorthy, Sripriya; Ciganovi?, Nikola et al. (2016) Minimal basilar membrane motion in low-frequency hearing. Proc Natl Acad Sci U S A 113:E4304-10
Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy et al. (2016) Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography. J Biomed Opt 21:25003
Shi, Xiaorui; Zhang, Fei; Urdang, Zachary et al. (2014) Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow. Hear Res 313:38-46
Ramamoorthy, Sripriya; Zha, Dingjun; Chen, Fangyi et al. (2014) Filtering of acoustic signals within the hearing organ. J Neurosci 34:9051-8
Ramamoorthy, Sripriya; Wilson, Teresa M; Wu, Tao et al. (2013) Non-uniform distribution of outer hair cell transmembrane potential induced by extracellular electric field. Biophys J 105:2666-75
Ren, Tianying; Zheng, Jiefu; He, Wenxuan et al. (2013) MEASUREMENT OF AMPLITUDE AND DELAY OF STIMULUS FREQUENCY OTOACOUSTIC EMISSIONS. J Otol 8:57-62
Subhash, Hrebesh M; Choudhury, Niloy; Chen, Fangyi et al. (2013) Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry. J Biomed Opt 18:036003

Showing the most recent 10 out of 48 publications