The objective of the research is to identify chemically the presumptive peripheral transmitter(s) of the cochlear nucleus of the guinea pig, the lateral-line organ of Xenopus laevis (the African clawed frog), and of labyrinthine organs of fish, and to characterize the biochemical systems associated with the presumptive transmitter(s). Analytical methods include: 1) high-resolution, high-performance liquid chromatography (HPLC) with fluorescence detection and detection by radioactivity, 2) mass spectrometry, for confirmation of chemical composition of HPLC fractions, 3) radioligand-receptor binding assays and autoradiographic localization, for characterization of neurotransmitter receptors of acoustico-lateralis fractions, 4) fluorometric and radioisotopic assays, for determination of transmitter-related enzymes of hair-cell fractions, and 5) a bioassay using the Xenopus lateral line, for detecting transmitter-like activity. Preparative methods include: 1) a surgical approach to the guinea-pig cochlea and temporal bone, for collection of perilymph and cerebrospinal fluid from guinea pigs in the presence and absence of noise, before determining small-molecule content of the fluids, 2) an in vitro system for release of presumptive neurotransmitters from acoustico-lateralis tissues, and 3) dissection of Xenopus lateral line, fish labyrinthine, and guinea-pig auditory fractions, prior to determination of their small-molecule content, enzyme activity, and receptor content. Using these methods, we plan to establish the identity, and presence in the lateral-line neuromast and fish labyrinthine organs, of presumptive acoustico-lateral-is transmitter(s), its (their) associated receptors and synthesizing and degrading enzymes, and its (their) biological activity. We also plan to establish the identity, stimulated release into perilymph, and biological activity of presumptive guinea-pig cochlear transmitter(s). We further plan to identify chemically non-transmitter materials that are releasted into perilymph during exposure of guinea pigs to noise at high levels. This predominantly biochemical approach should lead to the identification of peripheral neurotransmitter(s) of hearing and balance, and will suggest eventual therapies for transmitter-related hearing loss, tinnitus, and dizziness.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC000156-11
Application #
3215916
Study Section
Hearing Research Study Section (HAR)
Project Start
1980-05-01
Project End
1993-04-30
Budget Start
1990-05-01
Budget End
1991-04-30
Support Year
11
Fiscal Year
1990
Total Cost
Indirect Cost
Name
Wayne State University
Department
Type
Schools of Medicine
DUNS #
City
Detroit
State
MI
Country
United States
Zip Code
48202
Selvakumar, Dakshnamurthy; Drescher, Marian J; Deckard, Nathan A et al. (2017) Dopamine D1A directly interacts with otoferlin synaptic pathway proteins: Ca2+ and phosphorylation underlie an NSF-to-AP2mu1 molecular switch. Biochem J 474:79-104
Drescher, Dennis G; Dakshnamurthy, Selvakumar; Drescher, Marian J et al. (2016) Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins. Methods Mol Biol 1427:165-87
Ramakrishnan, Neeliyath A; Drescher, Marian J; Morley, Barbara J et al. (2014) Calcium regulates molecular interactions of otoferlin with soluble NSF attachment protein receptor (SNARE) proteins required for hair cell exocytosis. J Biol Chem 289:8750-66
Selvakumar, Dakshnamurthy; Drescher, Marian J; Drescher, Dennis G (2013) Cyclic nucleotide-gated channel ?-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. J Biol Chem 288:7215-29
Ramakrishnan, Neeliyath A; Drescher, Marian J; Drescher, Dennis G (2012) The SNARE complex in neuronal and sensory cells. Mol Cell Neurosci 50:58-69
Ramakrishnan, Neeliyath A; Drescher, Marian J; Khan, Khalid M et al. (2012) HCN1 and HCN2 proteins are expressed in cochlear hair cells: HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 287:37628-46
Selvakumar, Dakshnamurthy; Drescher, Marian J; Dowdall, Jayme R et al. (2012) CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem J 443:463-76
Drescher, Dennis G; Cho, Won Jin; Drescher, Marian J (2011) Identification of the porosome complex in the hair cell. Cell Biol Int Rep (2010) 18:
Drescher, M J; Cho, W J; Folbe, A J et al. (2010) An adenylyl cyclase signaling pathway predicts direct dopaminergic input to vestibular hair cells. Neuroscience 171:1054-74
Ramakrishnan, Neeliyath A; Drescher, Marian J; Drescher, Dennis G (2009) Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel Cav1.3. J Biol Chem 284:1364-72

Showing the most recent 10 out of 36 publications