Transduction of mechanical stimuli - like those of sound and head movements - is the fundamental role of the inner ear and its sensory hair cells. Hair cells transduce deflections of their hair bundles, the sensory organelle, with stunning sensitivity. While well described biophysically, the molecular composition and dynamics of the hair bundle's mechanotransduction apparatus are still mostly mysterious. The goal of our project is to identify key molecules involved in mechanotransduction, then to determine how they interact to form the transduction apparatus. We use a multidisciplinary approach that emphasizes biochemical techniques, including purification of hair bundles and detection of specific proteins by liquid-chromatography-tandem mass spectrometry (LC-MS/MS). In addition, we transfect hair cells with key bundle proteins or their fragments, for example tagged with fluorescent proteins, to allow us to test their roles in transduction or localize them without using antibodies. In the proposed project, we will determine how five key hair-bundle components form the transduction apparatus: (1) the bundle actin- based cytoskeleton;(2) myosin-1c, the adaptation-motor myosin;(3) the tip link, hypothesized to be composed of cadherin 23 and protocadherin 15;(4) the transduction channel, thought to be a member of the transient receptor potential (TRP) family;and (5) the bundle Ca2+ pump, plasma-membrane Ca2+- ATPase isoform 2. These molecules and others we expect to identify together form a transducer that can detect hair-bundle displacements of less than a nanometer, arising from sounds so faint that they are nearly drowned out by air molecules randomly impacting the ear drum and water molecules randomly deflecting bundles. Lay summary. Mechanotransduction by hair cells is a central event in hearing;disruption of transduction leads to profound deafness. Hair cells are the sensory cells of the inner ear;they detect and encode (transduce) sound. The complex of proteins in hair cells that transduce sound are still largely unknown;the goal of this project is to identify and characterize them, as they are essential for hearing.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC002368-17
Application #
7874474
Study Section
Auditory System Study Section (AUD)
Program Officer
Freeman, Nancy
Project Start
1994-07-01
Project End
2012-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
17
Fiscal Year
2010
Total Cost
$497,925
Indirect Cost
Name
Oregon Health and Science University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Vranka, Janice A; Staverosky, Julia A; Reddy, Ashok P et al. (2018) Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Invest Ophthalmol Vis Sci 59:246-259
Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A et al. (2018) ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci 38:843-857
Rozanov, Dmitri V; Rozanov, Nikita D; Chiotti, Kami E et al. (2018) MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection. J Proteomics 176:13-23
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer et al. (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 6:
Krey, J F; Wilmarth, P A; David, L L et al. (2017) Analysis of the Proteome of Hair-Cell Stereocilia by Mass Spectrometry. Methods Enzymol 585:329-354
Kala, Smriti; Mehta, Vaibhav; Yip, Chun Wai et al. (2017) The interaction of a Trypanosoma brucei KH-domain protein with a ribonuclease is implicated in ribosome processing. Mol Biochem Parasitol 211:94-103
Tompkins, Nathan; Spinelli, Kateri J; Choi, Dongseok et al. (2017) A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophys J 113:1868-1881
Krey, Jocelyn F; Krystofiak, Evan S; Dumont, Rachel A et al. (2016) Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J Cell Biol 215:467-482
Krey, Jocelyn F; Drummond, Meghan; Foster, Sarah et al. (2016) Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 6:27221
Geszvain, Kati; Smesrud, Logan; Tebo, Bradley M (2016) Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1. Appl Environ Microbiol 82:3774-3782

Showing the most recent 10 out of 62 publications