Understanding the fundamental principles of normal and abnormal brain development requires knowledge of the cellular events whereby differential experience influences the ontogeny of neural structure and function. In the auditory system, this area of research has achieved new and immediate clinical importance with the increasing use of cochlear implants in congenitally and prelingually hearing impaired infants. This application seeks continued funding for a research program aimed at understanding the cellular events underlying the influence of inner ear integrity and activity on development of brainstem auditory pathways. Four separate lines of investigation will be either continued or initiated. 1. We will continue to investigate the hypothesis that intracellular calcium homeostasis plays a key role in regulating the initiation of events leading to transneuronal cell death of brainstem neurons in young animals following damage to the inner ear or deprivation of acoustically driven inner ear activity. 2. We will investigate activity-dependent regulation of a specific molecule, a potassium channel (Kv1.1), thought to play a uniquely important role in the temporal coding of auditory information. Afferent regulation of the expression of this molecule will be examined at the levels of gene transcription, protein, and functional properties of cochlear nucleus cells. 3. We will use normal and mutant mice to examine the biological principles underlying differential susceptibility of the developing and mature brains to deprivation-induced degeneration. 4. We will combine single cell labeling, electrophysiology and calcium imaging methods to study the cellular mechanisms of afferent regulation of dendritic structure.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
1R01DC003829-01A1
Application #
2854130
Study Section
Special Emphasis Panel (ZRG1-IFCN-6 (01))
Program Officer
Leblanc, Gabrielle G
Project Start
1999-05-01
Project End
2004-04-30
Budget Start
1999-05-01
Budget End
2000-04-30
Support Year
1
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Washington
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Sakano, Hitomi; Zorio, Diego A R; Wang, Xiaoyu et al. (2017) Proteomic analyses of nucleus laminaris identified candidate targets of the fragile X mental retardation protein. J Comp Neurol 525:3341-3359
Seidl, Armin H; Rubel, Edwin W (2016) Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 64:487-94
Cramer, Karina S; Rubel, Edwin W (2016) Glial Cell Contributions to Auditory Brainstem Development. Front Neural Circuits 10:83
Sakano, Hitomi; Thaker, Ameet I; Davis, Greg E (2015) Adenoid Stones - ""Adenoliths"". J Otol Rhinol 4:
Kaur, Tejbeer; Zamani, Darius; Tong, Ling et al. (2015) Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion. J Neurosci 35:15050-61
Caras, Melissa L; Sen, Kamal; Rubel, Edwin W et al. (2015) Seasonal plasticity of precise spike timing in the avian auditory system. J Neurosci 35:3431-45
Tong, Ling; Strong, Melissa K; Kaur, Tejbeer et al. (2015) Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 35:7878-91
Wang, Yuan; Sakano, Hitomi; Beebe, Karisa et al. (2014) Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 522:2107-28
Seidl, Armin H; Rubel, Edwin W; Barría, Andrés (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914-9
McBride, Ethan G; Rubel, Edwin W; Wang, Yuan (2013) Afferent regulation of chicken auditory brainstem neurons: rapid changes in phosphorylation of elongation factor 2. J Comp Neurol 521:1165-83

Showing the most recent 10 out of 51 publications